17 research outputs found
An empirical analysis of terminological representation systems
The family of terminological representation systems has its roots in the representation system KL-ONE. Since the development of this system more than a dozen similar representation systems have been developed by various research groups. These systems vary along a number of dimensions.In this paper, we present the results of an empirical analysis of six such systems. Surprisingly, the systems turned out to be quite diverse leading to problems when transporting knowledge bases from one system to another. Additionally, the runtime performance between different systems and knowledge bases varied more than we expected. Finally, our empirical runtime performance results give an idea of what runtime performance to expect from such representation systems. These findings complement previously reported analytical results about the computational complexity of reasoning in such systems
An empirical analysis of optimization techniques for terminological representation systems : or: \u27Making KRIS get a move on\u27
We consider different methods of optimizing the classification process of terminological representation systems, and evaluate their effect on three different types of test data. Though these techniques can probably be found in many existing systems, until now there has been no coherent description of these techniques and their impact on the performance of a system. One goal of this paper is to make such a description available for future implementors of terminological systems. Building the optimizations that came off best into the KRIS system greatly enhanced its efficiency
Terminological knowledge representation : a proposal for a terminological logic
This paper contains a proposal for a terminological logic. The formalisms for representing knowledge as well as the needed inferences are described
Plan-based integration of natural language and graphics generation
Multimodal interfaces combining natural language and graphics take advantage of both the individual strength of each communication mode and the fact that several modes can be employed in parallel. The central claim of this paper is that the generation of a multimodal presentation system WIP which allows the generation of alternate presentations of the same content taking into account various contextual factors. We discuss how the plan-based approach to presentation design can be exploited so that graphics generation influences the production of text and vice versa. We show that well-known concepts from the area of natural language processing like speech acts, anaphora, and rhetorical relations take on an extended meaning in the context of multimodal communication. Finally, we discuss two detailed examples illustrating and reinforcing our theoretical claims