11 research outputs found

    Pyocyanin (5-methyl-1-hydroxyphenazine) produced by Pseudomonas aeruginosa as antagonist to vibrios in aquaculture: overexpression, downstream process and toxicity

    No full text
    Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.Cochin University of Science and TechnologyDepartment of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technolog

    Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    No full text
    This is a valuable research work in which authors have demonstrated the antagonistic effects of pseudomonas on the growth of vibrioCochin University of Science and TechnologyJournal of Coastal Life Medicine 2014; 2(1): 76-8

    Molecular characterization of a crustinlike antimicrobial peptide in the giant tiger shrimp, Penaeus monodon, and its expression profile in response to various immunostimulants and challenge with WSSV

    No full text
    A crustinlike antimicrobial peptide from the haemocytes of giant tiger shrimp, Penaeus monodon was partially characterized at the molecular level and phylogenetic analysis was performed. The partial coding sequence of 299 bp and 91 deduced amino acid residues possessed conserved cysteine residues characteristic of the shrimp crustins. Phylogenetic tree and sequence comparison clearly confirmed divergence of this crustinlike AMP from other shrimp crustins. The differential expression of the crustinlike AMP in P. monodon in response to the administration of various immunostimulants viz., two marine yeasts (Candida haemulonii S27 and Candida sake S165) and two bglucan isolates (extracted from C. haemulonii S27 and C. sake S165) were noted during the study. Responses to the application of two grampositive probiotic bacteria (Bacillus MCCB101 and Micrococcus MCCB104) were also observed. The immune profile was recorded preand postchallenge white spot syndrome virus (WSSV) by semiquantitative RTPCR. Expressions of seven WSSV genes were also observed for studying the intensity of viral infection in the experimental animals. The crustinlike AMP was found to be constitutively expressed in the animal and a significant downregulation could be noted postchallenge WSSV. Remarkable downregulation of the gene was observed in the immunostimulant fed animals prechallenge followed by a significant upregulation postchallenge WSSV. Tissuewise expression of crustinlike AMP on administration of C. haemulonii and Bacillus showed maximum transcripts in gill and intestine. The marine yeast, C. haemulonii and the probiotic bacteria, Bacillus were found to enhance the production of crustinlike AMP and confer significant protection to P. monodon against WSSV infectionCochin University of Science and TechnologyImmunobiology 216 (2011) 184–19

    Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture

    No full text
    Vibrio sp. V26 isolated from mangrove sediment showed 98 % similarity to 16S rRNA gene of Vibrio cholerae, V. mimicus, V. albensis and uncultured clones of Vibrio. Phenotypically also it resembled both V. cholerae and V. mimicus.Serogrouping, virulence associated gene profiling, hydrophobicity, and adherence pattern clearly pointed towards the non—toxigenic nature of Vibrio sp. V26. Purification and characterization of the enzyme revealed that it was moderately thermoactive, nonhemagglutinating alkaline metalloprotease with a molecular mass of 32 kDa. The application of alkaline protease from Vibrio sp. V26 (APV26) in sub culturing cell lines (HEp-2, HeLa and RTG-2) and dissociation of animal tissue (chick embryo) for primary cell culture were investigated. The time required for dissociation of cells as well as the viable cell yield obtained by while administeringAPV26 and trypsin were compared. Investigations revealed that the alkaline protease of Vibrio sp. V26 has the potential to be used in animal cell culture for subculturing cell lines and dissociation of animal tissue for the development of primary cell cultures, which has not been reported earlier among metalloproteases of Vibrios.Cochin University of Science and TechnologyCytotechnology (2013) 65:199–212 DOI 10.1007/s10616-012-9472-
    corecore