98 research outputs found

    SOUSA: the Swift Optical/Ultraviolet Supernova Archive

    Get PDF
    The Ultra-Violet Optical Telescope on the Swift spacecraft has observed hundreds of supernovae, covering all major types and most subtypes. Here we introduce the Swift Optical/Ultraviolet Supernova Archive (SOUSA), which will contain all of the supernova images and photometry. We describe the observation and reduction procedures and how they impact the final data. We show photometry from well-observed examples of most supernova classes, whose absolute magnitudes and colors may be used to infer supernova types in the absence of a spectrum. A full understanding of the variety within classes and a robust photometric separation of the groups requires a larger sample, which will be provided by the final archive. The data from the existing Swift supernovae are also useful for planning future observations with Swift as well as future UV observatories.Comment: Accepted for publication in the UV issue of Astrophysics and Space Science 10 pages, 6 figures SOUSA is an archive in progress with data being posted to the Swift SN website: http://swift.gsfc.nasa.gov/docs/swift/sne/swift_sn.htm

    High-Velocity Line Forming Regions in the Type Ia Supernova 2009ig

    Get PDF
    We report measurements and analysis of high-velocity (> 20,000 km/s) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between -14d and +13d with respect to the time of maximum B-band luminosity. We identify lines of Si II, Si III, S II, Ca II and Fe II that produce both high-velocity (HVF) and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M_B = -19.46 mag and Delta_m15 (B) = 0.90 mag). Similarly, the Si II lambda_6355 velocity at the time of B-max is greater than "normal" for a SN Ia, but it is not extreme (v_Si = 13,400 km/s). The -14d and -13d spectra clearly resolve HVF from Si II lambda_6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From -12d to -6d, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8,000 km/s. After -6d all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SN Ia show evidence for HVF from multiple lines in spectra obtained before -10d, and we compare the spectra of SN 2009ig to observations of other SN. We show that each of the unusual line profiles for Si II lambda_6355 found in early-time spectra of SN Ia correlate to a specific phase in a common development sequence from HVF to PVF.Comment: 19 pages, 11figures, 4 tables, submitted to Ap

    Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type-Ic Supernova 2014ad

    Full text link
    Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae, and none to date for broad-lined Type Ic supernovae (SN Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features, likely due to high opacity, and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Fe II 5169 Angstrom velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra using TARDIS, a 1D Monte-Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV. We find that high densities at high velocities are needed to reproduce the spectra, with \sim3 M_\odot of material at v>v > 22,000 km s1^{-1}, assuming spherical symmetry. Our nebular line fits suggest a steep density profile at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.Comment: 25 pages, 14 figures, submitted to AAS Journal

    A Strategy for LSST to Unveil a Population of Kilonovae without Gravitational-wave Triggers

    Get PDF
    We present a cadence optimization strategy to unveil a large population of kilonovae using optical imaging alone. These transients are generated during binary neutron star and potentially neutron star–black hole mergers and are electromagnetic counterparts to gravitational-wave signals detectable in nearby events with Advanced LIGO, Advanced Virgo, and other interferometers that will be online in the near future. Discovering a large population of kilonovae will allow us to determine how heavy-element production varies with the intrinsic parameters of the merger and across cosmic time. The rate of binary neutron star mergers is still uncertain, but only few (≾ 15) events with associated kilonovae may be detectable per year within the horizon of next-generation ground-based interferometers. The rapid evolution (~days) at optical/infrared wavelengths, relatively low luminosity, and the low volumetric rate of kilonovae makes their discovery difficult, especially during blind surveys of the sky. We propose future large surveys to adopt a rolling cadence in which g-i observations are taken nightly for blocks of 10 consecutive nights. With the current baseline2018a cadence designed for the Large Synoptic Survey Telescope (LSST), l≾ 7.5 poorly sampled kilonovae are expected to be detected in both the Wide Fast Deep (WFD) and Deep Drilling Fields (DDF) surveys per year, under optimistic assumptions on their rate, duration, and luminosity. We estimate the proposed strategy to return up to ~272 GW170817-like kilonovae throughout the LSST WFD survey, discovered independently from gravitational-wave triggers

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility

    Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas

    Get PDF
    The small, annual grass Brachypodium distachyon (L.) Beauv., a close relative of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in B. distachyon by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 B. distachyon, seven B. hybridum, and three B. stacei accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the B. hybridum genome, which appears as a mosaic of B. distachyon-like and B. stacei-like sequences. Analysis of more than 50,000 SNPs for the B. distachyon accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between B. distachyon populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within B. distachyon populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for Brachypodium, and illustrates the feasibility and limitations of GWAS in this model grass

    A Strategy for LSST to Unveil a Population of Kilonovae without Gravitational-wave Triggers

    Get PDF
    We present a cadence optimization strategy to unveil a large population of kilonovae using optical imaging alone. These transients are generated during binary neutron star and potentially neutron star–black hole mergers and are electromagnetic counterparts to gravitational-wave signals detectable in nearby events with Advanced LIGO, Advanced Virgo, and other interferometers that will be online in the near future. Discovering a large population of kilonovae will allow us to determine how heavy-element production varies with the intrinsic parameters of the merger and across cosmic time. The rate of binary neutron star mergers is still uncertain, but only few (≾ 15) events with associated kilonovae may be detectable per year within the horizon of next-generation ground-based interferometers. The rapid evolution (~days) at optical/infrared wavelengths, relatively low luminosity, and the low volumetric rate of kilonovae makes their discovery difficult, especially during blind surveys of the sky. We propose future large surveys to adopt a rolling cadence in which g-i observations are taken nightly for blocks of 10 consecutive nights. With the current baseline2018a cadence designed for the Large Synoptic Survey Telescope (LSST), l≾ 7.5 poorly sampled kilonovae are expected to be detected in both the Wide Fast Deep (WFD) and Deep Drilling Fields (DDF) surveys per year, under optimistic assumptions on their rate, duration, and luminosity. We estimate the proposed strategy to return up to ~272 GW170817-like kilonovae throughout the LSST WFD survey, discovered independently from gravitational-wave triggers

    Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge

    Get PDF
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms

    Three low-mass companions around aged stars discovered by TESS

    Get PDF
    We report the discovery of three transiting low-mass companions to aged stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass limit (TOI-1608b and TOI-2521b). These three systems were first identified using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has a radius of 1.05±0.04 RJ1.05\pm 0.04\ R_J, a mass of 69.9±2.3 MJ69.9\pm 2.3\ M_J and an orbital period of 7.71 days. TOI-1608b has a radius of 1.21±0.06 RJ1.21\pm 0.06\ R_J, a mass of 90.7±3.7 MJ90.7\pm 3.7\ M_J and an orbital period of 2.47 days. TOI-2521b has a radius of 1.01±0.04 RJ1.01\pm 0.04\ R_J, a mass of 77.5±3.3 MJ77.5\pm 3.3\ M_J and an orbital period of 5.56 days. We found all these low-mass companions are inflated. We fitted a relation between radius, mass and incident flux using the sample of known transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation between the flux and the radius for brown dwarfs and for low-mass stars that is weaker than the correlation observed for giant planets.Comment: 20 pages, 13 figures; submitted to MNRA
    corecore