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ABSTRACT

We present a cadence optimization strategy to unveil a large population of kilonovae using optical

imaging alone. These transients are generated during binary neutron star and potentially neutron

star–black hole mergers and are electromagnetic counterparts to gravitational-wave signals detectable

in nearby events with Advanced LIGO, Advanced Virgo, and other interferometers that will come

online in the near future. Discovering a large population of kilonovae will allow us to determine how

heavy element production varies with the intrinsic parameters of the merger and across cosmic time.

The rate of binary neutron star mergers is still uncertain, but only few (. 15) events with associated

kilonovae may be detectable per year within the horizon of next-generation ground-based interferome-

ters. The rapid evolution (∼ days) at optical/infrared wavelengths, relatively low luminosity, and the

low volumetric rate of kilonovae makes their discovery difficult, especially during blind surveys of the

sky. We propose future large surveys to adopt a rolling cadence in which g-i observations are taken

nightly for blocks of 10 consecutive nights. With the current baseline2018a cadence designed for the

Large Synoptic Survey Telescope (LSST), . 7.5 poorly-sampled kilonovae are expected to be detected

in both the Wide Fast Deep (WFD) and Deep Drilling Fields (DDF) surveys per year, under optimistic

assumptions on their rate, duration, and luminosity. We estimate the proposed strategy to return up

to ∼ 272 GW170817-like kilonovae throughout the LSST WFD survey, discovered independently from

gravitational-wave triggers.
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1. INTRODUCTION

Binary neutron star mergers have long been predicted

to be associated with short gamma-ray bursts (sGRBs

Blinnikov et al. 1984; Paczynski 1986; Eichler et al.

1989; Narayan et al. 1992; Fong & Berger 2013) and

optical/near-infrared transients called kilonovae (KN)

or macronovae (see for example Li & Paczyński 1998;

Kulkarni 2005; Rosswog 2005). A “living review” of KNe

can be found in Metzger (2017).

The low electron fraction of neutron star merger ejecta

favors the production of heavy elements such as lan-

thanides and actinides via rapid neutron capture (r-

process). The optical and infrared transient is powered

by the decay of these unstable nuclei. The nature of

the emission is governed by the neutron-richness and

production of lanthanides, or lack thereof. “Red” KNe

are usually associated with lanthanide-rich, mildly rela-

tivistic dynamical ejecta present in the equatorial plane

tidal tails. Lanthanide-rich material increases the opac-

ity, causing the emission to become brighter in the in-

frared (e.g., Hotokezaka et al. 2013; Barnes & Kasen

2013; Kasen et al. 2013; Tanaka & Hotokezaka 2013;

Tanaka et al. 2018). A “blue” KN component can be

produced in lanthanide-poor ejecta present in polar disk

winds, generated from the accretion of a disk of mate-

rial onto the merger remnant (e.g., Metzger et al. 2010;

Roberts et al. 2011). Such a blue component may be vis-

ible only under certain viewing angle conditions (Kasen

et al. 2017).

Signatures of KNe were first found during the follow-

up of sGRBs (Perley et al. 2009; Tanvir et al. 2013;

Berger et al. 2013; Gao et al. 2015; Jin et al. 2015, 2016;

Troja et al. 2018; Jin et al. 2019), but never found there-

after during blind surveys of the sky (e.g., Doctor et al.

2017; Scolnic et al. 2018), possibly due to low KN lumi-

nosity and rapid evolution (Figure 1-2).

On August 17, 2017 a KN was discovered in associ-

ation with the gravitational wave (GW) signal of a bi-

nary neutron star merger, known as GW170817 (Coul-

ter et al. 2017; Valenti et al. 2017; Arcavi et al. 2017;

Tanvir et al. 2017; Lipunov et al. 2017; Soares-Santos

et al. 2017). The identification of the KN was key to

pin-point the localization of the merger and to prompt

multi-wavelength follow-up (see Abbott et al. 2017a, and

references therein). Optical and infrared observations

∗ NASA Hubble Fellow
† Moore-Sloan and DIRAC Fellow

(Andreoni et al. 2017; Arcavi et al. 2017; Chornock et al.

2017; Coulter et al. 2017; Cowperthwaite et al. 2017;

Dı́az et al. 2017; Drout et al. 2017; Evans et al. 2017;

Hu et al. 2017; Kasliwal et al. 2017; Lipunov et al. 2017;

McCully et al. 2017; Pian et al. 2017; Smartt et al. 2017;

Tanvir et al. 2017; Shappee et al. 2017; Utsumi et al.

2017) showed that the transient reddened and faded

away more rapidly than other known transients, with

∆g > 5 and ∆T& 6000 K in the first week of observa-

tions (see also Kilpatrick et al. 2017; Nicholl et al. 2017;

Siebert et al. 2017; Villar et al. 2017). Detailed mod-

eling of the photometric data showed the light curves

were consistent with r-process heating, where a blue and

a red component are generated from lanthanide-poor

polar winds and lanthanide-rich material, respectively.

Models with ejecta with mass ∼0.05 M� and 0.1-0.3c

velocity fit the data well, where the blue component is

roughly half the mass and three times the velocity of

the red component (Kasen et al. 2017). The presence of

a third emission component was also considered (Cow-

perthwaite et al. 2017; Kilpatrick et al. 2017; Tanaka

et al. 2017). Some works specifically addressed the evi-

dence for r-process nucleosynthesis following the merger,

including Cowperthwaite et al. (2017); Chornock et al.

(2017); Drout et al. (2017); Smartt et al. (2017); Pian

et al. (2017); Kasen et al. (2017); Kasliwal et al. (2017)

and indicated neutron star mergers may be dominant

sites for heavy-element production in the Universe (e.g.,

Rosswog et al. 2018). The combined GW and electro-

magnetic information was used to measure cosmological

parameters without tying to a distance ladder (Abbott

et al. 2017b; Hotokezaka et al. 2018).

The detection of neutron star-black hole mergers and

their electromagnetic counterparts is one of the most

exciting challenges for multi-messenger astronomers in

the near future. Such mergers may also produce KNe

(Kasen et al. 2017). The KAGRA and LIGO-India

interferometers are expected to come online and join

Advanced LIGO (AdLIGO) and Advanced Virgo (Ad-

Virgo) for detecting GW signals between 2020–2025

(Abbott et al. 2018). A growing network of GW ob-

servatories will provide more and better-localized GW

detections. With the addition of the LIGO-India and

KAGRA detectors to the AdLIGO-AdVirgo network at

its design sensitivity, the number of binary neutron stars

detected per year is estimated to increase by a factor of

2-3, though the BNS range for KAGRA and AdVirgo

will be lower than the expected 190 Mpc range for the

remaining three detectors (Abbott et al. 2018). The me-
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dian 90% credible localization region for binary neutron

star mergers is expected to be reduced from ∼ 150 deg2

(AdLIGO and AdVirgo) to ∼ 10 deg2 when LIGO-India

and KAGRA join the AdLIGO and AdVirgo network.

Consequently, the follow-up of these GW triggers should

lead to the detection of a sample of KNe. However, KN

discoveries un-triggered by GW detection is likely going

to play an important role in complete population stud-

ies, especially if the GW detectors yield fewer binary

neutron star events than expected.

Rates of binary neutron star mergers are still highly

uncertain. Abbott et al. (2017c) estimate a binary

neutron star merger rate R=1540+3200
−1200 Gpc−3 yr−1

based solely on GW searches. However, the lack of

KN detection in past optical surveys constrains this

rate toward its lower limit, placing 3σ upper limits to

R < 800 Gpc−3yr−1 for GW170817-like events and a

more conservative value of R < 1600 Gpc−3yr−1 as-

suming that the typical KN is 50% as luminous as

the GW170817 KN (Kasliwal et al. 2017). Assum-

ing a upper limit R < 800 Gpc−3yr−1, a total number

of . 23 y−1 binary neutron star mergers can be ex-

pected to occur within the nominal AdLIGO horizon of

190 Mpc, only . 15 of which will be detectable due to

the non-homogeneous antenna pattern of GW detectors

and their duty cycle. Moreover, only a fraction of those

could have a detectable KN, as some could be located

too close to the Sun to observe with optical telescopes,

or generate faint transients beyond the detection limit

of available telescopes. Obscuration and confusion by

the Galactic plane is also a significant limitation to

the detection of counterparts. In light of these limita-

tions, the expected binary neutron star detection rate

of 4-80 events yr−1 for the AdLIGO-AdVirgo-KAGRA

network after 2020, based only on GW searches (Abbott

et al. 2018), will likely provide only a few tens of triggers

throughout the next decade.

In the next few years, the new Large Synoptic Sur-

vey Telescope (LSST, Ivezić et al. 2008) is expected

to be a game-changing facility in astrophysics. Time-

domain astronomy will particularly benefit from the

large ∼ 10 deg2 field of view (FoV) of the camera com-

bined with the depth achievable with the 8.4 m-diameter

primary mirror. The observing strategy proposed in

this work is particularly suitable for optimizing the main

Wide Fast Deep survey of LSST (see Section 3).

This paper is organized as follows. Section 2 expands

on the reasons why discovering KNe independently from

GW triggers can be important enough to deserve design-

ing new observing strategies with a major facility such

as LSST. In Section 3 we describe the current plans for

observations with LSST and expectations for serendip-

itous KN discoveries. We present the design of a new

strategy optimized for KN discovery in Section 4 and

we quantify its performance in Section 5. The proposed

strategy is then discussed in Section 6 and benefits for

other science cases are presented in Section 7.

2. IMPORTANCE OF FINDING KILONOVAE

WITHOUT GRAVITATIONAL-WAVE

TRIGGERS

Determining robust rates of KNe is of primary im-

portance because it directly constrains the rate of bi-

nary neutron star mergers. Hundreds of KN detections

would allow us to understand the distribution of pa-

rameters such as ejecta mass, ejecta velocity, and opac-

ity, along with a better understanding of the jet physics

(when combined with high-energy observations) and the

dependence of observed properties on the viewing angle.

Moreover, a better knowledge of KN rates and properties

could shed some light on the current debate on whether

KNe (e.g., Kasen et al. 2017) or collapsing massive stars

(Siegel et al. 2018; Siegel 2019) are the dominant sites

for heavy-element nucleosynthesis in the Universe. Fur-

thermore, searches for distant events can allow us to

understand how the KN rate varies with redshift. A

blind survey for fast transients with well planned color

measurements can help us understand the distribution

of their properties more completely, highlighting which

different types of KNe exist and how “typical” or atyp-

ical GW170817 was.

KNe discovered with LSST should provide a large

sample of host galaxies, allowing us to search for cor-

relations between KN properties and galaxy morphol-

ogy, star formation, and metallicity (Levan et al. 2017;

Pan et al. 2017; Im et al. 2017; Blanchard et al. 2017;

Andreoni et al. 2017). Even if spectroscopic measure-

ments of the active transients are not performed, large

telescopes can provide high-quality observations of their

hosts. The detection of KNe with LSST could also

trigger reverse-searches for low-significance signatures in

data acquired with GW and neutrino detectors (Acer-

nese et al. 2007). Such an approach can be valuable

especially when only one detector is online and accurate

GW localization is not possible, even if the significance

of the GW detection is high.

Target of Opportunity (ToO) observations with LSST

will serve to search for counterparts shortly after GW

triggers are issued (Margutti et al. 2018; Cowperthwaite

et al. 2018). Limitations for KNe detection via ToO

follow-up include GW detectors experiencing significant

downtime, with an average duty cycle of 60 %-70 % in

addition to months in which the interferometers are of-

fline to be upgraded. When one or more interferometer
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Figure 1. KN models from Kasen et al. (2017) convolved with Dark Energy Survey filters, similar to LSST filters. The two plots
at the top show KNe with high ejecta mass (0.075M�) and the two central panels show KNe with low ejecta mass (0.01M�).
The plots on the left are created assuming low lanthanide mass fraction (Xlan=10−4) and those of the right assuming high
lanthanide mass fraction (Xlan=10−2). The bottom plot shows model light curves built with parameters that best fit the KN
counterpart to GW170817 (0.025M�, Xlan=10−4.5; Arcavi 2018).

is offline, the whole GW detector network decreases in

sensitivity, and the source localization becomes poorer,

making the discovery of possible electromagnetic coun-

terparts more difficult. As in the case of GW170817,

KNe can also be found to be associated with sGRBs

(Perley et al. 2009; Tanvir et al. 2013; Berger et al. 2013;

Gao et al. 2015; Jin et al. 2015, 2016; Troja et al. 2018;

Jin et al. 2019) detected with gamma-ray telescopes such

as Fermi or Neil Gehrels Swift Observatory. However,

sGRBs are typically located at large distances and their

relativistic emission is observable only at favorable view-

ing angles, in contrast to KNe, which are isotropic in

their emission and detectable even at low redshifts (Met-

zger 2017). Other limiting factors for GW follow-up

include observational constraints that can prevent the

discovery of KNe, such as the merger occurring at co-

ordinates too close to the Sun, near the Galactic plane,

or in highly dust-obscured regions of their host galaxies.

We note that, in these cases, counterparts to GW events

could still be discovered with radio telescopes.
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3. EXPECTATIONS FOR KN DISCOVERY WITH

THE LSST 2018 BASELINE CADENCE

The overall LSST observing stategy is designed to

achieve four main science goals: taking an inventory of

the solar system, mapping the Milky Way via resolved

stellar population, exploring the transient optical sky,

and probing dark energy and dark matter (Ivezić et al.

2008). Using these themes, the original observing strat-

egy as outlined in the LSST Science Book designated

roughly 80-90% of the total observing time to a uni-

versal Wide-Fast-Deep (WFD) program, and allotted

10% of time for Deep Drilling Fields (DDF) and 1%

of time for mini surveys for specialized science goals

(LSST Science Collaboration et al. 2009). The cur-

rent baseline2018a1 simulation suggests that the main

WFD survey will require 86% of the total survey time,

for a total of 2,372,700 visits. This strategy yields 2293

fields observed in 6 filters over the 10 year survey with

a median number of visits as u: 61 g: 85 r: 194 i: 193

z: 180 y: 179. With the presently planned LSST WFD

survey strategy, it is expected that only 69 KNe events

will be detected over the 10 year lifetime of the survey,

with only 5.5 more detections from DDF (Scolnic et al.

2018). Scolnic et al. (2018) define a few specific criteria

for detection, requiring observations of KNe with S/N

> 5 in at least two filters within a time-window of 25

days, and for an observation within 20 days before, and

within 20 days after the S/N>5 observation.

The planned LSST baseline2018a cadence strategy

is expected to yield < 10 events per year under opti-

mistic conditions, because the strategy is not optimized

for KN discovery (Scolnic et al. 2018; Cowperthwaite

et al. 2018). Only a small number (<1 y−1) of such rare

and faint transients will be detectable in LSST DDF

because of the limited sky area explored (Scolnic et al.
2018).

4. NIGHTLY CADENCE WITH 2 FILTERS

We designed a generic observing strategy aiming at

maximizing KN discovery via nightly observations of

large regions of sky with at least 2 filters, preferably

g and i. The strategy is described in Section 4.1 and its

application to LSST is presented in Section 4.2.

4.1. Strategy description

The KN associated with GW170817 faded in g faster

(almost 2 mag in 24 hours, Figure 2) and reddened faster

(from g− z = −0.3 to +1.3 in 24 hours) than any other

known or theorized transient. Such rapid evolution in

1 http://ls.st/Document-28453

Figure 2. The peak magnitudes of a grid of KN models
spanning the space of merger parameters (Kasen et al. 2017)
are plotted against the rise time (left) and the fading rate
(right) expected for each model in the first 3 days after peak.
Star-shaped markers indicate the model of the grid that best
represents GW170817. Nightly measurements of g-i or i-
z colors can help identify KN candidates and study their
properties.

brightness and color can be used to identify KN candi-

dates.

Using g-z pairs of observations would be preferred in

order to measure more dramatic color changes (Figure 3)

and to target redder KNe. However, our calculations

show that fewer KNe are expected to be detected us-

ing z filter than using the adiacent and more sensitive

i filter, for all types of KN models within the range of

ejecta masses and lanthanide fraction that we considered

(see Section 5 and Table 1). Figure 3 shows that the gi

combination provides larger and more rapidly evolving

color changes than other filter combinations, other than

gz, for GW170817. Here the KN is described by the

model developed by Cowperthwaite et al. (2017); Vil-

lar et al. (2017). Bianco et al. (2019) obtain that gi

http://ls.st/Document-28453
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Figure 3. Color evolution of GW170817 in several filter
combinations, obtained using the model that Cowperthwaite
et al. (2017); Villar et al. (2017) developed to describe the
GW170817 kilonova. The combination of g and z obser-
vations returns the largest magnitude difference, with the
steepest rise in the first few days after the merger. The gi
combination, chosen for the strategy recommended in this
paper, returns a smaller change than gz, but it outperforms
other filter combinations.

Figure 4. Difference in g− i color assuming a time gap be-
tween g and i observations of from 1 hr to 4 hr. Simultaneous
g and i observations would lead to ∆(g − i) ∼ 0. Time gaps
shorter than 1 hr are preferred, although large gaps of ∼4 hr
would lead to up to ∼ 0.2 magnitude error in color in the
first couple of days after the merger, < 0.05 magnitude error
at later phases. Such differences may be comparable with –
or smaller than – photometric uncertainties.

pairs are among the preferred options when applying

machine-learning techniques to choose which filter com-

binations can best separate fast transients from Type Ia

supernovae and other slowly-evolving transients using

intra-night observations.

Observations in g and i filters should be performed

as close in time as possible to provide reliable color

information of fast-evolving transients. A time lag of

& 30 min is usually adopted to flag moving objects.

Figure 4 represents the difference in color of GW170817

when considering observing gaps between g and i ob-

servations of 1 hr, 2 hr, 3 hr, and 4 hr. Within this

time gap range, the error in g − i color measurement

is . 0.20 magnitudes at all phases of the KN, decreas-

ing to . 0.05 magnitudes about 2 d after the merger.

Such errors may lie within the uncertainty of photomet-

ric measurements, in which case they would affect the

derivation of other quantities in a negligible way.

The choice of observing for 10 consecutive nights is

dictated by several factors:

• KN models (Kasen et al. 2017) are expected to

fully evolve in .10 days, so high cadence is neces-

sary for their discovery. A blue component gen-

erated from lanthanide-poor disk winds can be

present and is expected to be visible for only 3-

4 days. A compilation of light curves estimated

for a range of ejecta masses and velocities are pre-

sented in Figure 1.

• Ten consecutive nights of observations would allow

us to obtain well-sampled light curves. At least 2-3

data points per band combined with upper limits

before and/or after the detection can help uniquely

identify KNe, reducing the number of contaminant

sources (see Section 6).

• A sequence of 10 consecutive nights make it eas-

ier to schedule observations in dark and grey time

to maximize the depth of the observations, and

therefore the number of discoveries.

4.2. A new strategy for LSST

Specifically in case of LSST, we propose to adopt a

“rolling” cadence for the WFD survey in which, every

year, gi observations are taken every night for 10 consec-

utive nights over a sky area of 500-700 deg2, considering

a total sky area of 18,000 deg2 to be covered by LSST

as planned in the current strategy. The cadence that we

propose is organized in two possible ways:

• A) Assuming observations in the gi bands take

place for 20 nights a month with the proposed

nightly cadence, broken up into two blocks of 10

consecutive nights, the sky area to be observed per

set of consecutive nights is approximately 750 deg2

per night. After 10 nights, a different 750 deg2 area

is observed for the next block of 10 nights. Observ-

ing for 20 days per month allows us to avoid bright

time observations.

• B) Assuming observations taking place 360 days

per year, the sky area to be observed every block of
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10 consecutive nights is 500 deg2 per night. After

10 nights, a different 500 deg2 area is observed for

the following block of 10 nights. This strategy is

less effective than A) because it includes bright

time observations.

Such cadence allows nightly observations to be per-

formed on a sky area ∼12.5 times larger than the one

explore with the DDF survey every night. Observations

in the remaining urzy filters (and additional 130 i-band

pointings) are not constrained by this proposal and may

be obtained with whatever alternative cadence that will

best fulfill the broad LSST science objectives. These

observations will also serve to provide longer baseline

for the gi observations, allowing us to further reject su-

pernovae and monitor the long-term behaviour of the

discovered transients.

Every set of 10 consecutive observing nights is inde-

pendent from each other, so every year the time at which

a certain sky area is imaged can be optimized for other

science cases, as long as it is imaged for 10 consecutive

nights every year. The specific month at which each sky

area is covered can differ every year, in order to enable

the imaging of 18,000 deg2 per year. However different

options for the amount of total sky area to cover can

be considered, as the ∼ 18,000 deg2 assumed here may

differ from the final choice of strategy for LSST.

Moving observations away from the Galactic plane to

avoid high-extinction regions is also preferable, leaving

specific mini-surveys the task of exploring the Galactic

plane with the cadence that they find most appropriate,

as recommended by Lochner et al. (2018).

As our proposal addresses the cadence of the original

LSST strategy, it should not add any significant over-

heads in time to the WFD survey as planned in 2018.

However, more g-band observations (at least 100 me-

dian visits per pointing, as described in LSST Science

Collaboration et al. 2009, , in its early 2019 version) are

required to best exploit the potential of the proposed

strategy. In general, we suggest that budgeting more

g-band visits than presently planned for LSST should

be considered, in favor of fast-transient astronomy as

well as for a broad range of time-domain projects, in-

cluding those focused on cosmology. When estimating

the approximate total amount of time required for our

main proposed strategy, we consider 750 deg2 tiling per

night, in blocks of 10 consecutive nights, using g and i

filters. Assuming 2 visits (one in g and one in i) with 30s

exposure time, the required observing time per night is:

2 visits × [(30s exposure) + (120s slew) + (5s settle

and readout)] × (750 deg2) / (10 deg2 FoV) = 6.46 hr

Therefore the annual time necessary to perform such

observations is ∼ 1550 hours per year, as planned to be

allocated for gi observations (LSST Science Collabora-

tion et al. 2009).

5. PERFORMANCE EVALUATION

We estimate the number of KNe that could be de-

tectable in different scenarios, considering several ca-

dence options (1, 2, and 3 night cadence) and di-

verse KN models. The luminosity and duration of

KNe strongly depend on the ejecta mass, kinetic ve-

locity, and electron fraction among other parameters.

Details on the numerical radioactive-decay-powered

models that we explore are described in Kasen et al.

(2017). We consider in particular 5 models: one that

well fits the light curve of GW170817, and the other

four built with combinations of low/high ejecta mass

(m=0.010/0.075 M�), and with low/high lanthanide

mass fraction (Xlan=10−4/10−2). All the considered

models assume kinetic velocity vk=0.3 c, and density

profile exponents d=1 (inner) and n=10 (outer). Fig-

ure 1 shows the griz light curves corresponding to the

chosen models.

Results of our calculations are presented in Table 1,

using detection limits of g=24.8, i=23.8, and z=22.5

(LSST Science Collaboration et al. 2009). We focus on g,

i, and z observations in order to identify which combina-

tion of filters and cadence allows us to discover the most

KNe. Given the dramatic colors and color evolution of

KNe (Figure 1), combined gz observations would be pre-

ferred, but results in Table 1 suggest higher chances of

discovering KNe by pairing the g and i filters.

Calculations show that LSST has the potential to de-

tect a large number of KNe (see the “Raw Potential”

column in Table 1), however individual detections can-

not be labelled as “discoveries” in this context. The need

of future analysis to define optimal selection criteria for

KN discovery is discussed in Section 6.

Estimates of the number of KNe that could be discov-

ered can be obtained requiring, for example, at least two

detections in one filter on one night, or multiple detec-

tions with one filter over multiple nights. Our strategy

achieves an increase in the number of discovered KNe

requiring at least one detection in both g and i filters,

assuming a nightly cadence (C1) that allows us to cover

the peak time of KNe in both filters and well constrains

the duration of the transient. As the cadence moves

from nightly to 2 and 3 nights, the number of discov-

ered KNe decreases by one order of magnitude for every

type of KN model. We also note that Siebert et al.

(2017) suggested that LSST can find a large number of

GW170817-like KNe if a nightly cadence is adopted.



8 Andreoni et al.

Table 1. We explore the detectability of a set of KNe modelled with different ejecta mass and lanthanide mass fraction. First
we compute the expected number of KNe recovered with at least one detection in both g and i filters (gi) assuming that we can
sample the light curve with nightly cadence, therefore covering the kilonova peak at both bands. The “Raw potential” represents
the number of KN that could be detected during LSST WFD survey (at least one data point in at least one filter). We compute
the number of KNe that we expect to recover in the survey with at least 2 detections in the same filter with nightly cadence
(C1), 2-night cadence (C2), and 3-night cadence (C3). Numbers are computed considering a KN rate of 1,000 Gpc−3y−1.

KN model gi Filter Raw C1 C2 C3

(C1) potential

GW170817

g 782 131 42 19

272 i 199 82 37 16

z 21 9 3 1

Low ej. mass, low Xlan

g 315 49 15 6

96 i 87 37 14 6

z 10 4 1 1

Low ej. mass, high Xlan

g 3 0 0 0

1 i 27 11 4 2

z 8 4 1 0

High ej. mass, low Xlan

g 1,367 237 77 36

460 i 640 276 120 55

z 96 45 16 6

High ej. mass, high Xlan

g 19 3 1 0

5.9 i 121 50 20 9

z 40 20 5 3

New simulations of our proposed strategy with the

LSST Operations Simulator2 (OpSim Delgado et al.

2014) would help us compute even more reliable num-

bers for expected KN discoveries. We plan on using

the transientAsciiMetric3 to generate light curves and

measure the recovery efficiency for KN models and ob-

served events. Our estimates do not account for weather

and hardware maintenance. Historical data from other

Chilean observatories (e.g. Flaugher et al. 2015) sug-

gest that ∼ 10% of nights are usually lost due to poor

weather. Based on OpSim simulations, we expect that

∼ 82% of the total 3684 nights planned for LSST sur-

vey will provide usable data, accounting for weather and

instrumental down-time.

6. DISCUSSION

One of the main problems to be addressed in KN

searches not triggered by GW or gamma-ray signals is

defining the selection criteria to identify KNe. Recent

works place constraints on the number of detections and

the transient duration to distinguish KNe from other

“contaminant” transients such as Type Ia supernovae

2

Software: OpSim , Delgado et al. (2014)
3 https://github.com/fedhere/sims maf contrib/blob/

master/mafContrib/transientAsciiMetric.py

(Scolnic et al. 2018; Setzer et al. 2018; Cowperthwaite

et al. 2018). These constraints include color and light-

curve evolution information when addressing KN detec-

tion. Bianco et al. (2019) show that intra-night ob-

servations can provide enough information to separate

fast transient candidates (including KNe) from slower

transients, so that follow-up with other facilities can be

triggered. More challenging is the rejection of different

types of fast transients, whose rates and characteristics

are still highly uncertain. The confident detection of

more KNe during GW trigger follow-ups in the near fu-

ture would help determine the actual identification effi-

ciency of KNe, providing a clearer view on the diversity

and uncertainty in the KN population (see also Rossi

et al. 2019). In other words, a better knowledge of KNe

may allow us to discover KNe more confidently based

on photometric information, aside from detecting them

in the data stream.

The observing strategy that we presented in this paper

combines high cadence and color information. Present

and future surveys can benefit from observing with such

cadence for KN detection as well as for a number of other

science cases (see Section 7). In addition to LSST, sensi-

tive wide-field facilities such as Subaru Hyper Suprime-

Cam (Miyazaki et al. 2012) and the Dark Energy Cam-

era (Flaugher et al. 2015) could be suitable for surveying

the sky with the proposed cadence.

https://github.com/fedhere/sims_maf_contrib/blob/master/mafContrib/transientAsciiMetric.py
https://github.com/fedhere/sims_maf_contrib/blob/master/mafContrib/transientAsciiMetric.py
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A gi-nightly cadence provides a uniform dataset that

enables regular monitoring of both brightness and color

evolution of the sources. When such a dataset is ob-

tained, fast transients can be identified with several com-

binations of selection criteria. Population studies on

transients identified with systematic short-timescale ob-

servations could lead to i) a better understanding of the

distribution of KN parameters, including ejecta mass,

velocity, opacity, and heavy-element content, ii) better

ways of separating KNe from other types of fast tran-

sients, and iii) possible identification of new classes of

dim (e.g., Kasliwal 2011) and rapidly evolving transients

(e.g., Golkhou & Butler 2014; Golkhou et al. 2015).

The ability to find KNe based only on survey data

is particularly important in case of deep surveys such

as LSST, that are expected to yield a large number

(up to ∼ million) of transient alerts every night. Ob-

serving strategies with time gaps >1-2 nights (in the

same filter) should rely on rapid follow-up (hours to

days) of many candidates for KN confirmation, pos-

sibly performed with 8m-class telescopes if candidates

are fainter than ∼23 magnitudes. Although the avail-

ability of world-class facilities is limited, they are nec-

essary to observe faint transients especially beyond the

AdLIGO/AdVirgo horizon of ∼190 Mpc, where we ex-

pect the most serendipitous KN discoveries to take

place. One of the strengths of our proposed strategy is

that a large sample of KN candidates with well-sampled

light curves can be discovered without the need for

prompt spectroscopic classification. At the same time,

gi nightly observations provide excellent information to

select a few high-priority candidates for spectroscopic

follow-up.

In Figure 5 we demonstrate how our proposed strat-

egy would sample the lightcurve of a GW170817-like KN

placed at 3 different distances, assuming that the observ-

ing block starts at the time of the merger. As expected,

an event as close as 40 Mpc would be fully sampled in

both gi bands. Such a nearby object could be detected

independently from GW triggers if, for example, GW

detectors are offline (see Section 2). Light curves are

expected to include fewer data points at the AdLIGO

design horizon (redshift z = 0.4) and at the design hori-

zon of the A+ LIGO upgrade (z = 0.07). We expect to

find more such poorly-sampled events than well-sampled

events due to the increase in probed volume close to the

detection limit.

The strategy suggested in this paper could work in

good synergy with an intra-night cadence designed for

fast transient detection, such as the cadence proposed by

Bianco et al. (2019). The “Presto-Color” idea (Bianco

et al. 2019) is based on 3 visits per night in 2 filters

Figure 5. Light curve of GW170817 placed at redshift z =
0.01 (40 Mpc, the GW170817 distance), z = 0.04 (190 Mpc,
the AdLIGO design horizon), and z = 0.07 (325 Mpc, A+
LIGO upgrade design horizon). Models are compiled from
Cowperthwaite et al. (2017); Villar et al. (2017). Solid mark-
ers indicate the nightly observations that we recommend to
perform. Circles mark detection and triangles upper or lower
limits. The lower panel shows the g − i color evolution,
where detections and lower limits are indicated for redshift
z = 0.04.

(gi or rz) and it aims at rapidly recognizing rare fast

transients, including KNe. If Presto-Color is adopted

with a cadence such as the LSST WFD baseline ca-

dence in 2018, light curves of discovered candidates

would be poorly sampled and fast-transient detections

would hardly be classifiable, unless successful follow-up

observations are performed. As Bianco et al. (2019)

suggest, this intra-night cadence is best coupled with

a rolling cadence that naturally provides more photo-

metric data points with LSST for those transients rec-

ognized to evolve rapidly. As a result, the strategy that

Bianco et al. (2019) proposed could be well coupled with

the gi-nightly cadence described in this work.

7. BENEFITS FOR OTHER SCIENCE CASES

The observations proposed herein are fundamentally

a combination of three components: i) intra-night de-

tection and color information, ii) a 10-night high ca-

dence period, observing in two filters every night, and

iii) specifically for LSST, a long duration low-cadence

period with the remaining four filters urzy and addi-

tional i band visits. This proposed survey strategy is

well suited to any object which benefits strongly from

intensive observations on 1 - 2 week timescales, while

observations outside of this high-cadence window still al-

low for long-term characterization. A number of known
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transient events exist on these timescales whose discov-

ery and characterization to date has been primarily lim-

ited by cadence of observations and volume surveyed.

These include, but are not limited to:

• The somewhat enigmatic objects known as “Fast

Blue Optical Transients” or “Fast Evolving Lu-

minous Transients” (e.g., Drout et al. 2014; Ar-

cavi et al. 2016; Rest et al. 2018), that are gener-

ally only loosely characterized and whose physical

progenitor system and explosion mechanism are

poorly constrained. These objects are often missed

in surveys as their rapid rise and evolution on a 3-

day cadence often results in only 1 − 4 detections

depending on brightness, and a larger survey with

a daily cadence would allow one to accurately char-

acterize their rise time, light curve shape, and pop-

ulation diversity in an effort to understand their

origin. The intense study and characterization of

the extraordinary ultraviolet transient AT2018cow

suggests that this class of ’Fast Blue Optical Tran-

sients’ represents a separate type of astrophysical

event, and provides a strong case for their targeted

follow-up (Prentice et al. 2018; Perley et al. 2018;

Margutti et al. 2019).

• Some type Ia supernovae that, in the first ∼ 1-

3 days after explosion, can show anomalous blue

emission, absent in other well-studied events (e.g.,

Brown et al. 2012). This has been inferred to orig-

inate from interaction between the SN and the en-

velope of a companion star (e.g., Cao et al. 2015).

A large sample of Type Ia SN with early color

data and a daily cadence would allow the accurate

measurement of early blue excess and enable the

accurate determination of what fraction of Type

Ia SNe come from the single degenerate vs dou-

ble degenerate progenitor paths. In addition, it

can enable the investigation and modelling of the

companion stars while potentially enhancing pre-

cision Type Ia cosmology (Jiang et al. 2017).

• GRB science through the discovery of an inde-

pendent sample of optically discovered GRB af-

terglows (similar to Cenko et al. 2015). With a

completely separate set of systematics, this would

enable us to validate our current understanding

of long GRBs and allow for a stringent search for

true orphan afterglows (GRBs with no detected

high-energy emission) in combination with Neil

Gehrels Swift Observatory and Fermi NASA mis-

sions. It also has the potential to discover a signif-

icant population off-axis bursts (Ghirlanda et al.

2015), where the relativistic jet is not directly

aligned with the observer but becomes visible as

the beaming angle widens. Some recent stud-

ies suggest a significant isotropic emission (Wu &

MacFadyen 2018) may be present which would in-

crease the detection rate. Such studies would allow

us to more tightly constrain the GRB jet opening

angle, structure, and environment - particularly

when combined with prompt GRB studies (e.g.,

Golkhou et al. 2015). With these events being

rare, and most GRB optical afterglows being de-

tected for less than ∼ 10 days (Nicuesa Guelbenzu

et al. 2012), the high cadence and large area of

the LSST WFD survey described here are crucial

to discovering a sample large enough to complete

these goals.

• Core-collapse supernova shock breakout (e.g.,

Bersten et al. 2018) and shock cooling (De et al.

2018) of the extended envelope surrounding the

progenitor star. Those components of supernova

explosions evolve on timescales from ∼minutes to

a few days, and are among the few ways to probe

a massive star’s stellar structure just prior to its

explosion.

• Tidal disruption events (TDEs), for which early

multi-band information is key to their recogni-

tion (as Gezari et al. 2018; Bricman & Gomboc

2018, stress in their proposal for changes in the

LSST observing strategy). Same-night color in-

formation and nightly cadence can help discover

TDEs and trigger follow-up (e.g., Golkhou et al.

2018), while the “third component” of the cadence

that we propose (more sparse, low-cadence obser-

vations in 4 additional filters, including ”u” band

which is crucial for TDE characterization) can pro-

vide long-term light curves to monitor the evolu-

tion of TDEs.

The list above is indicative and not meant to be ex-

haustive - there are many more studies which would

benefit from such a survey strategy. Several works were

made public stressing the need for LSST to adopt higher

cadence during the main WFD survey (Bianco et al.

2019; Gezari et al. 2018; Lochner et al. 2018) than cur-

rently planned.

The cadence presented in this paper can address any

variable object that evolves significantly faster than a

Type Ia supernova, or exhibits substantial color evolu-

tion. Early, high cadence observations are key for de-

tecting these rare, yet compelling events that are often

missed in less frequently cadenced surveys.

8. CONCLUSION
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Unveiling a larger population of KNe is necessary to

answer questions that could not be answered by ToO

observations alone, or by low-cadence, irregular survey

strategies. The survey capabilities of the LSST-WFD

program offers an unparalleled platform to probe KNe

over cosmic time, with the potential to investigate the

largest number of detectable KNe in the current age of

time-domain astronomy. With our proposed gi nightly-

cadence strategy hundreds of KNe can be unveiled using

LSST, adding ∼ 1 order of magnitude of events to the

number of KNe that are expected to be recovered with

the WFD baseline strategy in 2018. This result would

be independent of GW detections of binary neutron star

and neutron star–black hole mergers and their follow-up

campaigns.
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