123 research outputs found

    Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by BioMed Central Ltd and can be found at: http://www.biomedcentral.com/.Background: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. \ud \ud Results: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. \ud \ud Conclusions: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation

    Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules

    Get PDF
    Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation

    Transcription Factors in Light and Circadian Clock Signaling Networks Revealed by Genomewide Mapping of Direct Targets for Neurospora White Collar Complex

    Get PDF
    Light signaling pathways and circadian clocks are inextricably linked and have profound effects on behavior in most organisms. Here, we used chromatin immunoprecipitation (ChIP) sequencing to uncover direct targets of the Neurospora crassa circadian regulator White Collar Complex (WCC). The WCC is a blue-light receptor and the key transcription factor of the circadian oscillator. It controls a transcriptional network that regulates ∼20% of all genes, generating daily rhythms and responses to light. We found that in response to light, WCC binds to hundreds of genomic regions, including the promoters of previously identified clock- and light-regulated genes. We show that WCC directly controls the expression of 24 transcription factor genes, including the clock-controlled adv-1 gene, which controls a circadian output pathway required for daily rhythms in development. Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways

    Rules for Growth: Promoting Innovation and Growth Through Legal Reform

    Get PDF
    The United States economy is struggling to recover from its worst economic downturn since the Great Depression. After several huge doses of conventional macroeconomic stimulus - deficit-spending and monetary stimulus - policymakers are understandably eager to find innovative no-cost ways of sustaining growth both in the short and long runs. In response to this challenge, the Kauffman Foundation convened a number of America’s leading legal scholars and social scientists during the summer of 2010 to present and discuss their ideas for changing legal rules and policies to promote innovation and accelerate U.S. economic growth. This meeting led to the publication of Rules for Growth: Promoting Innovation and Growth Through Legal Reform, a comprehensive and groundbreaking volume of essays prescribing a new set of growth-promoting policies for policymakers, legal scholars, economists, and business men and women. Some of the top Rules include: • Reforming U.S. immigration laws so that more high-skilled immigrants can launch businesses in the United States. • Improving university technology licensing practices so university-generated innovation is more quickly and efficiently commercialized. • Moving away from taxes on income that penalize risk-taking, innovation, and employment while shifting toward a more consumption-based tax system that encourages saving that funds investment. In addition, the research tax credit should be redesigned and made permanent. • Overhauling local zoning rules to facilitate the formation of innovative companies. • Urging judges to take a more expansive view of flexible business contracts that are increasingly used by innovative firms. • Urging antitrust enforcers and courts to define markets more in global terms to reflect contemporary realities, resist antitrust enforcement from countries with less sound antitrust regimes, and prohibit industry trade protection and subsidies. • Reforming the intellectual property system to allow for a post-grant opposition process and address the large patent application backlog by allowing applicants to pay for more rapid patent reviews. • Authorizing corporate entities to form digitally and use software as a means for setting out agreements and bylaws governing corporate activities. The collective essays in the book propose a new way of thinking about the legal system that should be of interest to policymakers and academic scholars alike. Moreover, the ideas presented here, if embodied in law, would augment a sustained increase in U.S. economic growth, improving living standards for U.S. residents and for many in the rest of the world

    Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules

    Get PDF
    Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants.Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice.Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species
    • …
    corecore