19 research outputs found

    Multidimensional simulation of combustion and knock onset in gas engines

    No full text
    Natural gas fuelled internal combustion engines enable efficient energy conversion with relatively low environmental impact. Depending on the specific application, the available fuel quality, and the emission regulations to be fulfilled, different types of gas-engine combustion systems are in use. The major performance and hence efficiency limiting factors in gas fuelled engines are related to the lower ignitability of natural gas at part load and the appearance of abnormal combustion (knock) at high load conditions. This article provides an overview of the multidimensional CFD simulation workflow for the investigation and assessment of flame propagation and knock onset characteristics in different types of natural gas fuelled internal combustion engines. The most common approaches for simulating flame propagation/combustion under engine conditions are presented together with selected models for describing the pre-flame reactions finally leading to knock onset in the unburned in-cylinder charge ahead of the flame. Based on selected application examples, the models’ performance and capabilities with respect to reflecting the essential characteristics of flame propagation and knock onset are presented

    Metoda LES jako narzędzie do analizy fluktuacji ciśnienia dla kolejnych cykli pracy w silnikach benzynowych o wtrysku bezpośrednim

    No full text
    The Large Eddy Simulation method (LES) has become a powerful computational tool for the application to turbulent flows. It links the classical Reynolds Averaged Navier–Stokes (RANS) approach and Direct Numerical Simulation (DNS). This means that the large eddies are computed explicitly in a time-dependent simulation using the filtered Navier-Stokes equations. The LES resolves the large flow scales that depend directly on the geometry where the small scales are modelled by the subgrid-scale models. LES is expected to improve the description of the aerodynamic and combustion processes in Internal Combustion Engines. This paper addresses the topic of developing the combustion model GCM (Gradient Combustion model) for the Large Eddy Simulation (LES) method. Another part of this paper presents numerical investigations of cycle-to-cycle combustion pressure variability with comparison to experimental data. The Gradient Combustion model (GCM) based on the Turbulent Flame Speed Closure Model (TFSCM) is validated against the experimental data for a multi-cycle gasoline direct injection research engine (SCRE). It is shown that the introduced combustion model is stable and capable of proper representation of the experimental results which is one of the assets of the LES method.Metoda LES jest obecnie zaawansowanym narzędziem numerycznym do analizy przepływów turbulentnych. Metoda LES opiera się na połączeniu klasyczej metody uśredniania równań Naviera-Stokes (RANS) z bezpośrednią analizą numeryczną (DNS). Oznacza to, że duże struktury wirowe są rozwiązywane niejawnie poprzez filtrowanie równań Naviera-Stokesa. W metodzie LES oznacza to obliczanie przepływu dużej skali, który zależy od geometrii, podczas gdy przepływ w małej skali jest modelowany modelem podsiatkowym (ang. Sub-grid-scale models, SGS). Uważa się, że metoda LES pozwoli na poprawienie numerycznego opisu aerodynamiki i procesów spalania w silnikach tłokowych. Artykuł przedstawia wyniki prac rozwojowych nad modelem spalania w metodzie LES. Model GCM (model spalania oparty na metodzie gradientu) został zastosowany do obliczeń wielocyklicznych i ich weryfikacji z wynikami eksperymentalnymi. Wyniki eksperymentalne pozyskano z badań na jednocylindrowym silniku badawczym (SCRE) o wtrysku bezpośrednim. W pracy pokazano, że model spalania jest stabilny numerycznie oraz otrzymane wyniki są zgodne z wynikami eksperymentalnymi, co jest jedną z ważniejszych zalet metody LES

    Optimisation of diesel autoignition tabulation procedures for AVL code "FIRE"

    No full text
    The modifications of existing Diesel auto-ignition tabulation for CFD code AVL "FIRE" will be presented in this paper. Current n-heptane tabulation (used to simulate Diesel behaviour in IC engines) did not include the phenomenon of cool flame ignition. This phenomenon is important since the temperature of the air/fuel mixture is significantly higher after its occurrence and the simulation results could be improved if this is also taken into consideration when simulating combustion in Diesel engines. Current methods of auto-ignition computation in AVL FIRE are based on the extraction of ignition delay times from tabulated data dependent on four parameters: temperature, pressure, air excess ratio and EGR mass fraction. The new tabulation procedure was developed using the same parameters as starting points for two-step chemical combustion. Temperature changes were observed and a compilation of several criteria was used to determine the start of both cool flame and main ignition. The above parameters were varied and the calculations were performed for each parameter set. Chemical software was used for two-step combustion calculations, using reduced then complex chemical mechanisms, and the results of calculations were stored in a binary file. Results included the values for cool flame ignition delay, main ignition delay, and cool flame and main ignition heat releases. This paper will present the methods used to determine the ignition delays (cool flame and main ignition), as well as results comparing the data acquired using three different chemical mechanisms (three levels of complexity). The data acquired from the calculations would be used to optimize the tabulation procedure using more complex (accurate) chemical mechanisms in a way which will also be described
    corecore