20 research outputs found

    Sedimentology and isotope geochemistry of transitional evaporitic environments within arid continental settings : from erg to saline lakes

    Get PDF
    This research was supported by grants to RPP from the AAPG (Gustavus E. Archie Memorial Grant) and by the European Union’s Horizon 2020 research and innovation programme (Grant 678812 to M.W.C.).Arid continental basins typically contain a spectrum of coeval environments that coexist and interact from proximal to distal. Within the distal portion, aeolian ergs often border playa, or perennial, desert lakes, fed by fluvial incursions or elevated groundwaters. Evaporites are common features in these dryland, siliciclastic dominant settings. However, sedimentary controls upon evaporite deposition are not widely understood, especially within transitional zones between coeval clastic environments that are dominantly controlled by larger scale allocyclic processes, such as climate. The sulphur (δ34S) and oxygen (δ18O, Δ17O) isotope systematics of evaporites can reveal cryptic aspects of sedimentary cycling and sulphate sources in dryland settings. However, due to the lack of sedimentological understanding of evaporitic systems, isotopic data can be easily misinterpreted. This work presents detailed sedimentological and petrographic observations, coupled with δ34S, δ18O and Δ17O data, for the early Permian Cedar Mesa Sandstone Formation (western USA). Depositional models for mixed evaporitic / clastic sedimentation, which occurs either in erg-marginal or lacustrine-marginal settings, are presented to detail the sedimentary interactions present in terms of climate variations that control them. Sedimentological and petrographical analysis of the evaporites within the Cedar Mesa Sandstone Formation reveal a continental depositional environment and two end member depositional models have been developed: erg-margin and lake-margin. The δ34S values of gypsum deposits within the Cedar Mesa Sandstone Formation are consistent with late Carboniferous to early Permian marine settings. However, a marine interpretation is inconsistent with sedimentological and petrographic evidence. Consequently, δ34S, δ18O and Δ17O values are probably recycled and do not reflect ocean-atmosphere values at the time of evaporite precipitation. They are most likely derived from the weathering of older marine evaporites in the hinterland. Thus, the results demonstrate the need for a combination of both sedimentological and geochemical analysis of evaporitic systems to better understand their depositional setting and conditions.PostprintPeer reviewe

    Mindfulness meditation in the treatment of substance use disorders and preventing future relapse: neurocognitive mechanisms and clinical implications

    Get PDF
    Substance use disorders (SUDs) are a pervasive public health problem with deleterious consequences for individuals, families, and society. Furthermore, SUD intervention is complicated by the continuous possibility of relapse. Despite decades of research, SUD relapse rates remain high, underscoring the need for more effective treatments. Scientific findings indicate that SUDs are driven by dysregulation of neural processes underlying reward learning and executive functioning. Emerging evidence suggests that mindfulness training can target these neurocognitive mechanisms to produce significant therapeutic effects on SUDs and prevent relapse. The purpose of this manuscript is to review the cognitive, affective, and neural mechanisms underlying the effects of mindfulness-based interventions (MBIs) on SUDs. We discuss the etiology of addiction and neurocognitive processes related to the development and maintenance of SUDs. We then explore evidence supporting use of MBIs for intervening in SUDs and preventing relapse. Finally, we provide clinical recommendations about how these therapeutic mechanisms might be applied to intervening in SUDs and preventing relapse.National Institute of Health (NIH) award to ELG (R01DA042033

    Low-speed instrumented drill press for bone screw insertion

    No full text
    Screw insertion torque is a widely used/effective method for quantifying fixation strength in orthopedic implant research for different screw geometries, implantation sites, and loads. This work reports the construction of an open-source instrumented benchtop screw insertion device for a total cost of 7545(7545 (492 + $7053 for equipped sensors), as well as validation of the device and an example use-application. The insertion device is capable of recording the axial load, rotational speed, and applied torque throughout the screw insertion process at 10 samples per second, as demonstrated in the validation test. For this combination of bone analog (20 PCF Sawbones©), screw, and loading, the resolution of the torque sensor was 25% of the maximum measured torque; a different model torque sensor would be required to meet ASTM F543-17, which specifies a resolution of 10% of the maximum torque. This system is optimized for fastener insertion at speeds of 120 rpm or less and axial loading up to 50 N
    corecore