Investigating the Relationship Between In-Process Quality Metrics and Mechanical Response in the L-PBF Process

Abstract

Laser powder bed fusion (L-PBF) additive manufacturing is a process that utilizes a high- powered laser to build near net-shaped parts in a layer-by-layer fashion using metal powder as the feedstock material. Traditionally, the analysis of L-PBF produced parts has relied solely on post- build characterization to understand the relationship between the printing process and the final mechanical properties. Recent developments of in-process quality assurance systems, such as Sigma Additive Solutions’ PrintRite3D, can measure in-process thermal signatures and melt pool disturbances in real-time. This research aims to examine the relationship between process parameters (e.g., scan strategy, scanning speed, and layer thickness) and in-process quality metrics (IPQMs) captured by the PrintRite3D system on a Renishaw AM400. The mechanical response of multiple part geometries (NIST residual stress bridges, single-arched bridges) and build materials (Ti6Al4V) includes residual stress deflection and hardness; the results are compared with the IPQMs.Mechanical Engineerin

    Similar works