663 research outputs found
Expression in Escherichia coli of a cloned DNA sequence encoding the pre-S2 region of hepatitis B virus
A DNA sequence encoding the entire pre-S2 region (amino acids 120-174; serotype ayw) of human hepatitis B virus envelope protein has been inserted into the lacZ gene of the plasmid pSKS105 yielding a recombinant, pWS3. Lac+ colonies of the Escherichia coli M182 (lacIOPZYA), isolated after transformation with pWS3, produced a pre-S2 peptide-ß-galactosidase fusion protein. This fusion protein, which comprised as much as 3% of the total bacterial protein, was purified to >90% homogeneity by affinity chromatography on p-aminophenyl-ß-D-thiogalactoside-Sepharose. It is immunoprecipitable with rabbit antibodies to a synthetic peptide corresponding to amino acids 120-145 of the pre-S2 region of serotype adw [pre-S(120-145)] or with antibodies to hepatitis B virus. pre-S(120-145) completely blocked the binding of either antibody to the pre-S2 peptide-ß-galactosidase fusion protein. These results indicate that there are antigenic determinants on the fusion protein that are closely related to, if not identical to, determinants on synthetic pre-S(120-145) and on pre-S2 sequences of native hepatitis B virus particles. Thus, bacteria transformed with pWS3 can provide an abundant source of pre-S2-ß-galactosidase fusion protein, which may prove useful either as a diagnostic reagent possessing marker enzyme activity suitable for ELISA tests or as an immunogen with potential to contribute to active prophylaxis of hepatitis B
Book Reviews
Reviews of the following books: Schoodic Point: History of the Edge of Acadia National Park by Allen K. Workman; The Irish of Portland, Maine: A History of Forest City Hibernians by Matthew Jude Barker; The Negotiator: A Memoir by George J. Mitchell; The Visual Language of Wabanaki Art by Jeanne Morningstar Kent; Bar Harbor in the Roaring Twenties from Village Life to the High Life on Mount Desert Island by Luann Yetter; The Franco-Americans of Lewiston-Auburn by Mary Rice-DeFosse and James Myall
Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships
Network structure strongly constrains the range of dynamic behaviors
available to a complex system. These system dynamics can be classified based on
their response to perturbations over time into two distinct regimes, ordered or
chaotic, separated by a critical phase transition. Numerous studies have shown
that the most complex dynamics arise near the critical regime. Here we use an
information theoretic approach to study structure-dynamics relationships within
a unified framework and how that these relationships are most diverse in the
critical regime
Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits
Observations have established that extremely compact, massive objects are
common in the universe. It is generally accepted that these objects are black
holes. As observations improve, it becomes possible to test this hypothesis in
ever greater detail. In particular, it is or will be possible to measure the
properties of orbits deep in the strong field of a black hole candidate (using
x-ray timing or with gravitational-waves) and to test whether they have the
characteristics of black hole orbits in general relativity. Such measurements
can be used to map the spacetime of a massive compact object, testing whether
the object's multipoles satisfy the strict constraints of the black hole
hypothesis. Such a test requires that we compare against objects with the
``wrong'' multipole structure. In this paper, we present tools for constructing
bumpy black holes: objects that are almost black holes, but that have some
multipoles with the wrong value. The spacetimes which we present are good deep
into the strong field of the object -- we do not use a large r expansion,
except to make contact with weak field intuition. Also, our spacetimes reduce
to the black hole spacetimes of general relativity when the ``bumpiness'' is
set to zero. We propose bumpy black holes as the foundation for a null
experiment: if black hole candidates are the black holes of general relativity,
their bumpiness should be zero. By comparing orbits in a bumpy spacetime with
those of an astrophysical source, observations should be able to test this
hypothesis, stringently testing whether they are the black holes of general
relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis
Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment
Bistability in Apoptosis by Receptor Clustering
Apoptosis is a highly regulated cell death mechanism involved in many
physiological processes. A key component of extrinsically activated apoptosis
is the death receptor Fas, which, on binding to its cognate ligand FasL,
oligomerize to form the death-inducing signaling complex. Motivated by recent
experimental data, we propose a mathematical model of death ligand-receptor
dynamics where FasL acts as a clustering agent for Fas, which form locally
stable signaling platforms through proximity-induced receptor interactions.
Significantly, the model exhibits hysteresis, providing an upstream mechanism
for bistability and robustness. At low receptor concentrations, the bistability
is contingent on the trimerism of FasL. Moreover, irreversible bistability,
representing a committed cell death decision, emerges at high concentrations,
which may be achieved through receptor pre-association or localization onto
membrane lipid rafts. Thus, our model provides a novel theory for these
observed biological phenomena within the unified context of bistability.
Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our
model also suggests a mechanism by which cells may function as bistable
life/death switches independently of any such dynamics in their downstream
components. Our results highlight the role of death receptors in deciding cell
fate and add to the signal processing capabilities attributed to receptor
clustering.Comment: Accepted by PLoS Comput Bio
Identifying topological edge states in 2D optical lattices using light scattering
We recently proposed in a Letter [Physical Review Letters 108 255303] a novel
scheme to detect topological edge states in an optical lattice, based on a
generalization of Bragg spectroscopy. The scope of the present article is to
provide a more detailed and pedagogical description of the system - the
Hofstadter optical lattice - and probing method. We first show the existence of
topological edge states, in an ultra-cold gas trapped in a 2D optical lattice
and subjected to a synthetic magnetic field. The remarkable robustness of the
edge states is verified for a variety of external confining potentials. Then,
we describe a specific laser probe, made from two lasers in Laguerre-Gaussian
modes, which captures unambiguous signatures of these edge states. In
particular, the resulting Bragg spectra provide the dispersion relation of the
edge states, establishing their chiral nature. In order to make the Bragg
signal experimentally detectable, we introduce a "shelving method", which
simultaneously transfers angular momentum and changes the internal atomic
state. This scheme allows to directly visualize the selected edge states on a
dark background, offering an instructive view on topological insulating phases,
not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP
Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases". Extended version of arXiv:1203.124
Melt analysis of mismatch amplification mutation assays (melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models.
Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA), is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg). Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs) and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of Melt-MAMA, which should prove useful to the wider scientific community
- …