325 research outputs found
Infrared study of spin crossover Fe-picolylamine complex
Infrared (IR) absorption spectroscopy has been used to probe the evolution of
microscopic vibrational states upon the temperature- and photo-induced spin
crossovers in [Fe(2-picolylamine)3]Cl2EtOH (Fe-pic). To overcome the small
sizes and the strong IR absorption of the crystal samples used, an IR
synchrotron radiation source and an IR microscope have been used. The obtained
IR spectra of Fe-pic show large changes between high-spin and low-spin states
for both the temperature- and the photo- induced spin crossovers. Although the
spectra in the temperature- and photo-induced high-spin states are relatively
similar to each other, they show distinct differences below 750 cm-1. This
demonstrates that the photo-induced high-spin state involves microscopically
different characters from those of the temperature-induced high-spin state. The
results are discussed in terms of local pressure and structural deformations
within the picolylamine ligands, and in terms of their possible relevance to
the development of macroscopic photo-induced phase in Fe-pic.Comment: 6 pages (text) and 6 figures,submitted to J. Phys. Soc. Jp
Affordable dye sensitizer by waste
Abstract The development of dye sensitizer is growing in line with the increasing demand for renewable energy. A research to obtain a dye sensitizer that is economical, safe, and produces a great value of DSSC efficiency is a challenge unresolved. On the other hand, the efforts for waste reduction are also intensively conducted to create better environment. In this paper, the variation of synthetic dye wastes from batik industries have been successfully applied as dye sensitizer and fabricated on DSSC cells. Congo red (1.0133%) yielded higher efficiency than rhodamine B (0.0126%), methyl orange (0.7560%), and naphthol blue black (0.0083%). The divergence of the efficiency of DSSC is very dependent upon the chromophore group owned by dye. This study has proven that the more chromophore group possessed by dye, the higher the efficiency of DSSC generated. This research concludes that the dye wastes have a bright future to be implemented as dye sensitizer on solar cells
Minimalism in Radiation Synthesis of Biomedical Functional Nanogels
A scalable, single-step, synthetic approach for the manufacture of
biocompatible, functionalized micro- and nanogels is presented. In particular,
poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and
nanogels were generated through e-beam irradiation of PVP aqueous solutions in
the presence of a primary amino-group-carrying monomer. Particles with
different hydrodynamic diameters and surface charge densities were obtained at
the variance of the irradiation conditions. Chemical structure was investigated by
different spectroscopic techniques. Fluorescent variants were generated through
fluorescein isothiocyanate attachment to the primary amino groups grafted to
PVP, to both quantify the available functional groups for bioconjugation and
follow nanogels localization in cell cultures. Finally, a model protein, bovine
serum albumin, was conjugated to the nanogels to demonstrate the attachment
of biologically relevant molecules for targeting purposes in drug delivery. The
described approach provides a novel strategy to fabricate biohybrid nanogels
with a very promising potential in nanomedicine
Extraction of Actinide(III, IV, V, VI) Ions and TcO 4 − by N,N,N′,N′‐Tetraisobutyl‐3‐Oxa‐Glutaramide
- …