15 research outputs found

    An osteoporotic hip fracture in a 14-year-old girl undergoing chemotherapy and operated for knee osteosarcoma

    Get PDF
    Non-weight-bearing, pre- and postsurgical immobilization, neoadjuvant and adjuvant chemotherapy are known to act on bone turnover, causing osteoporosis over short and long time periods. Treatment of fracture insurgence is very difficult because it really depends on being able to choose the right time (i.e., when immunodeficiency is less important). We report a case of spontaneous neck femur fracture during adjuvant chemotherapy in a young girl treated with resection and prosthesis reconstruction for distal femur osteosarcoma. Possible prevention and the correct approach and surgical timing are emphasized considering immunodeficiency following chemotherapy

    Novel stem cell strategies for tendon regeneration

    No full text
    INTRODUCTION Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration [1]. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models. METHODS Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories [2], expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds [3,4]. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. RESULTS ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h). DISCUSSION & CONCLUSIONS Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold’s topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration

    Mazabraud’s syndrome: a new case and review of the literature

    No full text
    The association between muscular myxomas and fibrous dysplasia is a rare condition known as Mazabraud’s syndrome, as reported by Henschen (Verh Dtsch Ges Pathol 21:93–97, 1926) and Mazabraud A and Girard (Rev Rhum Mal Osteoartic 24(9–10):652–659, 1957). We report a case of a 32-year-old woman with multiple myxomas in her right thigh and monomelic fibrous dysplasia. A review of the international literature referring to 67 cases to date was carried out. The syndrome is characterised by the following features: females are twice as likely to be affected as males; the lower limbs are the most frequently affected, fibrous dysplasia is more common in the femur and the pelvis and myxomas in the quadriceps muscle; myxoma is multiple in more than 70% of cases. Although there has never been any continuity between tumours and bone lesions, a significant correlation between dysplastic bone and myxoma has been revealed

    Measurement of the branching fractions for Cabibbo-suppressed decays D+K+Kπ+π0D^{+}\to K^{+} K^{-}\pi^{+}\pi^{0} and D(s)+K+ππ+π0D_{(s)}^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0} at Belle

    No full text
    International audienceWe present measurements of the branching fractions for the singly Cabibbo-suppressed decays D+K+Kπ+π0D^+\to K^{+}K^{-}\pi^{+}\pi^{0} and Ds+K+ππ+π0D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, and the doubly Cabibbo-suppressed decay D+K+ππ+π0D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, based on 980 fb1{\rm fb}^{-1} of data recorded by the Belle experiment at the KEKB e+ee^{+}e^{-} collider. We measure these modes relative to the Cabibbo-favored modes D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} and Ds+K+Kπ+π0D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}. Our results for the ratios of branching fractions are B(D+K+Kπ+π0)/B(D+Kπ+π+π0)=(11.32±0.13±0.26)%B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (11.32 \pm 0.13 \pm 0.26)\%, B(D+K+ππ+π0)/B(D+Kπ+π+π0)=(1.68±0.11±0.03)%B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (1.68 \pm 0.11\pm 0.03)\%, and B(Ds+K+ππ+π0)/B(Ds+K+Kπ+π0)=(17.13±0.62±0.51)%B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) = (17.13 \pm 0.62 \pm 0.51)\%, where the uncertainties are statistical and systematic, respectively. The second value corresponds to (5.83±0.42)×tan4θC(5.83\pm 0.42)\times\tan^4\theta_C, where θC\theta_C is the Cabibbo angle; this value is larger than other measured ratios of branching fractions for a doubly Cabibbo-suppressed charm decay to a Cabibbo-favored decay. Multiplying these results by world average values for B(D+Kπ+π+π0)B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) and B(Ds+K+Kπ+π0)B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) yields B(D+K+Kπ+π0)=(7.08±0.08±0.16±0.20)×103B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})= (7.08\pm 0.08\pm 0.16\pm 0.20)\times10^{-3}, B(D+K+ππ+π0)=(1.05±0.07±0.02±0.03)×103B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})= (1.05\pm 0.07\pm 0.02\pm 0.03)\times10^{-3}, and B(Ds+K+ππ+π0)=(9.44±0.34±0.28±0.32)×103B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}) = (9.44\pm 0.34\pm 0.28\pm 0.32)\times10^{-3}, where the third uncertainty is due to the branching fraction of the normalization mode. The first two results are consistent with, but more precise than, the current world averages. The last result is the first measurement of this branching fraction

    Measurement of branching fractions of Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 and Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta at Belle

    No full text
    We present a study of a singly Cabibbo-suppressed decay Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 and a Cabibbo-favored decay Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta based on 980 fb1\rm fb^{-1} of data collected by the Belle detector, operating at the KEKB energy-asymmetric e+ee^+e^- collider. We measure their branching fractions relative to Λc+pKS0\Lambda_c^+\to{}pK_S^0: B(Λc+pKS0KS0)/B(Λc+pKS0)=(1.48±0.08±0.04)×102\mathcal{B}(\Lambda_c^+\to{}pK_S^0K_S^0)/\mathcal{B}(\Lambda_c^+\to{}pK_S^0)={(1.48 \pm 0.08 \pm 0.04)\times 10^{-2}} and B(Λc+pKS0η)/B(Λc+pKS0)=(2.73±0.06±0.13)×101\mathcal{B}(\Lambda_c^+\to{}pK_S^0\eta)/\mathcal{B}(\Lambda_c^+\to{}pK_S^0)={(2.73\pm 0.06\pm 0.13)\times 10^{-1}}. Combining with the world average B(Λc+pKS0)\mathcal{B}(\Lambda_c^+\to{}pK_S^0), we have the absolute branching fractions: B(Λc+pKS0KS0)=(2.35±0.12±0.07±0.12)×104\mathcal{B}(\Lambda_c^+\to{}pK_S^0K_S^0) = {(2.35\pm 0.12\pm 0.07 \pm 0.12 )\times 10^{-4}} and B(Λc+pKS0η)=(4.35±0.10±0.20±0.22)×103\mathcal{B}(\Lambda_c^+\to{}pK_S^0\eta) = {(4.35\pm 0.10\pm 0.20 \pm 0.22 )\times 10^{-3}}. The first and second uncertainties are statistical and systematic, respectively, while the third ones arise from the uncertainty on B(Λc+pKS0)\mathcal{B}(\Lambda_c^+\to{}pK_S^0). The mode Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 is observed for the first time and has a statistical significance of > ⁣10σ>\!10\sigma. The branching fraction of Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta has been measured with a threefold improvement in precision over previous results and is found to be consistent with the world average

    Measurement of the Ωc0\Omega_c^0 lifetime at Belle II

    No full text
    We report on a measurement of the Ωc0\Omega_c^0 lifetime using Ωc0Ωπ+\Omega_c^0 \to \Omega^-\pi^+ decays reconstructed in e+eccˉe^+e^-\to c\bar{c} data collected by the Belle II experiment and corresponding to 207 fb1207~{\rm fb^{-1}} of integrated luminosity. The result, τ(Ωc0)=243±48(stat)±11(syst) fs\rm\tau(\Omega_c^0)=243\pm48( stat)\pm11(syst)~fs, agrees with recent measurements indicating that the Ωc0\Omega_c^0 is not the shortest-lived weakly decaying charmed baryon
    corecore