11 research outputs found

    Implementaci贸n y testeo del m茅todo de alineamiento temporal de se帽ales biom茅dicas basado en autovalores

    Get PDF
    Una aspecto importante a la hora de obtener una estimaci贸n robusta de una se帽al biol贸gica repetitiva es el alienamiento de los diferentes segmentos de la se帽al donde encontramos la periodicidad, para su posterior promediado. Actualmente exiten m茅todos de alineamiento muy eficaces basados en la autocorrelaci贸n. En este proyecto proponemos un nuevo m茅todo de alineamiento m谩s eficiente en computo basado en los autovalores y autovectores de la matriz de autocorrelaci贸n

    Unsupervised anomaly detection applied to F-OTDR

    Get PDF
    Distributed acoustic sensors (DASs) based on direct-detection 桅-OTDR use the light鈥搈atter interaction between light pulses and optical fiber to detect mechanical events in the fiber environment. The signals received in 桅-OTDR come from the coherent interference of the portion of the fiber illuminated by the light pulse. Its high sensitivity to minute phase changes in the fiber results in a severe reduction in the signal to noise ratio in the intensity trace that demands processing techniques be able to isolate events. For this purpose, this paper proposes a method based on Unsupervised Anomaly Detection techniques which make use of concepts from the field of deep learning and allow the removal of much of the noise from the 桅-OTDR signals. The fact that this method is unsupervised means that no human-labeled data are needed for training and only event-free data are used for this purpose. Moreover, this method has been implemented and its performance has been tested with real data showing promising results

    Desarrollo y caracterizaci贸n de un sensor ac煤stico distribuido basado en la t茅cnica de medida C-OTDR

    Get PDF
    En este trabajo se presenta el desarrollo de un sistema DAS (distributed acoustic sensor) de fibra 贸ptica basado en la t茅cnica de reflectometr铆a 贸ptica coherente en dominio temporal (C-OTDR), la caracterizaci贸n de sus prestaciones de alcance y sensibilidad y el an谩lisis de los fen贸menos lineales y no lineales que limitan las capacidades del mismo. Este trabajo se ha realizado en colaboraci贸n con la empresa APL (Arag贸n Photonics Labs)

    Integraci贸n de sistemas de sensado distribuido sobre fibra 贸ptica y estudio de aplicaciones de uso

    Get PDF
    El sensado distribuido sobre fibra 贸ptica hace posible que, mediante el uso de un 煤nico interrogador y una fibra ya desplegada, se consiga obtener el equivalente a una gran cantidad de sensores independientes que captan est铆mulos en el entorno de la fibra. Existen diversas t茅cnicas que nos permiten generar este sensado distribuido. En esta tesis industrial se han implementado e integrado algunas de ellas. Dichas t茅cnicas han sido desarrolladas previamente en grupos de investigaci贸n pertenecientes a varias universidades espa帽olas. En cada t茅cnica se identifican unos par谩metros clave que definen las prestaciones del sensor distribuido o interrogador que las implementa. 脡stas son: resoluci贸n espacial, resoluci贸n temporal, sensibilidad y alcance. Esto hace que, dependiendo de la aplicaci贸n a la que se destina el interrogador, unas t茅cnicas sean m谩s apropiadas que otras.En la primera parte de esta tesis se revisan aspectos fundamentales de la fibra 贸ptica, as铆 como los fen贸menos f铆sicos en los que se basan dichos sensores (difusi贸n Rayleigh, y difusi贸n Raman y Brillouin estimulada), siendo dos de ellos la base de funcionamiento de los interrogadores industrializados en la tesis industrial (de nombre comercial HECTOR, HDAS y BLAST).En el cap铆tulo de HECTOR, se explica el principio de medida de los sistemas C-OTDR (Coherent Optical Time Domain Reflectometer) basados en amplitud y se realiza un proceso de integraci贸n y mejora donde se prueban y comparan componentes de varios fabricantes llegando a una soluci贸n que mantiene un compromiso entre coste del interrogador y prestaciones. Adem谩s, se realizan dos pruebas de concepto para la extensi贸n de alcance; primero con la amplificaci贸n distribuida con Raman y despu茅s con el uso de m贸dulos repetidores 贸pticos. En 煤ltimo lugar se muestran casos de aplicaci贸n como la vigilancia perimetral y TPI (Third Party Intrussion) en grandes infraestructuras. Gracias al proceso de industrializaci贸n completado, el HECTOR forma parte de soluciones integradas para grandes operadoras de infraestructuras.En el cap铆tulo de HDAS, se explica el principio de medida de un novedoso sistema de medida CP C-OTDR (Chirped-Pulse Coherent Optical Time Domain Reflectometer) basado en pulso chirpado y se realiza un proceso de integraci贸n de mejoras como: la extensi贸n de rango (con el RE) incluyendo el protocolo de seguridad ante el acceso al enlace y el filtrado temporal y frecuencial para reducir el ruido ASE en la medida. Con ello se consigue un incremento del alcance y sensibilidad del HDAS, adem谩s de reducir los requisitos de seguridad y formaci贸n para su uso. Se prueba el interrogador en las siguientes aplicaciones: seguimiento de est铆mulos mec谩nicos y t茅rmicos (carga-rotura y calentamiento en cable OPGW); monitorizaci贸n de grandes infraestructuras y TPI; y detecci贸n de sismos. Gracias al proceso de industrializaci贸n completado, el HDAS es una herramienta de referencia en grupos de investigaci贸n para la monitorizaci贸n de sismos, fen贸menos volc谩nicos y fen贸menos oceanogr谩ficos.En el cap铆tulo de BLAST, se explica el principio de medida de los sistemas BOTDA (Brillouin Optical Time Domain Analysis) y se realiza un proceso de integraci贸n de mejoras como: la optimizaci贸n de la fuente l谩ser (sonda y bombeo), la reducci贸n del ruido en polarizaci贸n y la extensi贸n del rango mediante amplificaci贸n distribuida. Con ello se consigue un incremento del alcance y sensibilidad del BLAST. Se prueba el interrogador en las siguientes aplicaciones: seguimiento de deformaciones en el terreno (en el margen del r铆o Ebro) y detecci贸n de fugas en gasoductos. Varios de los desarrollos que est谩n en progreso son la optimizaci贸n del pulso del bombeo (pulsos estrechos y rectangulares) y la mejora continua de bombeo y sonda. Gracias al proceso de industrializaci贸n completado, el BLAST se est谩 usando en medidas t茅rmicas avanzadas de laboratorio y en monitorizaci贸n de fugas en industria Oil & Gas.En el 煤ltimo cap铆tulo, se explica el novedoso principio de medida de los sistemas TE C-OTDR (Time-Expanded Coherent Optical Time Domain Reflectometry) con doble peine frecuencial y se muestran dos pruebas de concepto por medio de dos arquitecturas de la t茅cnica. Con ello, se prueba que el uso de secuencias binarias como elemento principal de la se帽al moduladora de sonda y oscilador local es una soluci贸n viable. Se abre el camino hacia una futura integraci贸n al no requerir de complejos y costosos AWGs. Se realizan pruebas de concepto en la estimaci贸n de flecha en un setup a escala en entorno controlado que permite validar nuevamente la t茅cnica de medida para esta aplicaci贸n. Gracias a las pruebas de concepto realizadas, esta t茅cnica de medida pasa a formar parte del porfolio de patentes de la empresa Arag贸n Photonics Labs.<br /

    Monitorizaci贸n de flecha en OPPC mediante CP-肖OTDR

    Get PDF
    La tecnolog铆a CP-肖OTDR permite la medida lineal de strain en cables de alta tensi贸n. El an谩lisis en tiempo real de las frecuencias de vibraci贸n de la l铆nea posibilita la monitorizaci贸n del valor de la flecha, lo que viabiliza el ajuste din谩mico de la capacidad de la l铆nea, mejorando su seguridad y eficiencia

    The application of distributed optical fiber sensors (BOTDA) to sinkhole monitoring. Review and the case of a damaging sinkhole in the Ebro Valley evaporite karst (NE Spain)

    Get PDF
    Distributed optical fiber sensors (DOFS) have been postulated as a suitable technique for long-range monitoring of sinkhole-related subsidence, and possibly for the anticipation of catastrophic collapse (early-warning systems). The strain data published in previous works refer to artificial experiments considering real and virtual cover collapse sinkholes characterized by rapid subsidence and sharp lateral deformation gradients. The influence of the subsidence mechanism (sagging, collapse, suffosion) on the capability of DOFS to satisfactorily detect active subsidence is discussed. Sagging sinkholes with poorly-defined lateral edges, low lateral deformation gradients and slow subsidence are identified as the most challenging scenario. The performance of BOTDA optical fiber for monitoring such type of sagging sinkholes is evaluated in the active Alcal谩 sinkhole, which affects a flood-control dike creating a high-risk and -uncertainty scenario. This sinkhole shows active subsidence in sections tens of meters long with maximum subsidence rates ranging between 5 and 35鈥痬m/yr. The comparison of vertical displacement data measured by high-precision leveling and the strain recorded by two types of fiber optic cables shows good spatial and temporal correlation. The subsidence sections are captured in the strain profiles by: (1) troughs of negative strain (contraction) in the area affected by subsidence, with the maximum strain associated with the point of most rapid settlement; and (2) lateral ridges of positive values (extension) in the marginal zones. A subsidence acceleration phase associated with a flood is also captured by substantial increments in the strain values. In this challenging scenario, despite the reasonably good spatial and temporal correlation between the displacement and strain data, the unambiguous identification of the active subsidence area with the fiber optic data alone might be difficult. Better results could be obtained improving the monitoring system (e.g., tighter cable-ground coupling) and testing other types of sinkholes with more localized deformation zones and higher subsidence rates

    Time-expanded FOTDR based on Orthogonal Polarization Frequency Comb generation

    Get PDF
    Phase-sensitive Optical Time-Domain Reflectometry (桅OTDR) has emerged as an effective and high-performance solution within the realm of Distributed Optical Fiber Sensing (DOFS) technologies, which has promoted its use in an ever-growing number of fields. The challenges arisen by new operation fields demand surpassing the historical trade-offs in this technology, specially aiming for higher resolution without jeopardizing the system simplicity and cost-effectiveness. In this context, time-expanded (TE-)桅OTDR has been recently proposed as a DOFS solution delivering cm-range resolution with sub-MHz detection and acquisition bandwidths. It is based on the use of an interferometric scheme that employs a dual frequency comb (DFC), consisting of two mutually coherent optical frequency combs with dissimilar repetition rates. In this paper, we present a novel DFC generation scheme for TE-桅OTDR that exploits the polarization orthogonality. In particular, our approach considerably increases the common path followed by the two frequency combs, thus reducing instability and noise as compared to the conventional generation scheme. Additionally, we employ an IQ modulation scheme with two PRBS generators that increases the scalability of the interrogator while severely reducing its cost and complexity. Results show a reduction in the noise amplitude spectral density especially at low frequency values, which corroborates the stability enhancement of this proposed architecture as compared to the conventional scheme

    Monitoring of a highly flexible aircraft model wing using time-expanded phase-sensitive OTDR

    Get PDF
    In recent years, the use of highly flexible wings in aerial vehicles (e.g., aircraft or drones) has been attracting increasing interest, as they are lightweight, which can improve fuel-efficiency and distinct flight performances. Continuous wing monitoring can provide valuable information to prevent fatal failures and optimize aircraft control. In this paper, we demonstrate the capabilities of a distributed optical fiber sensor based on time-expanded phase-sensitive optical time-domain reflectometry (TE-桅OTDR) technology for structural health monitoring of highly flexible wings, including static (i.e., bend and torsion), and dynamic (e.g., vibration) structural deformation. This distributed sensing technology provides a remarkable spatial resolution of 2 cm, with detection and processing bandwidths well under the MHz, arising as a novel, highly efficient monitoring methodology for this kind of structure. Conventional optical fibers were embedded in two highly flexible specimens that represented an aircraft wing, and different bending and twisting movements were detected and quantified with high sensitivity and minimal intrusiveness

    Unsupervised Anomaly Detection Applied to &Phi;-OTDR

    No full text
    Distributed acoustic sensors (DASs) based on direct-detection &Phi;-OTDR use the light&ndash;matter interaction between light pulses and optical fiber to detect mechanical events in the fiber environment. The signals received in &Phi;-OTDR come from the coherent interference of the portion of the fiber illuminated by the light pulse. Its high sensitivity to minute phase changes in the fiber results in a severe reduction in the signal to noise ratio in the intensity trace that demands processing techniques be able to isolate events. For this purpose, this paper proposes a method based on Unsupervised Anomaly Detection techniques which make use of concepts from the field of deep learning and allow the removal of much of the noise from the &Phi;-OTDR signals. The fact that this method is unsupervised means that no human-labeled data are needed for training and only event-free data are used for this purpose. Moreover, this method has been implemented and its performance has been tested with real data showing promising results

    Overhead transmission line sag monitoring using a chirped-pulse phase-sensitive OTDR

    Get PDF
    The capacity of overhead transmission lines is fixed and determined by the physical properties of the line, which are estimated based on worst-case weather scenarios. Exceeding the capacity limit can cause the conductor to increase the sag excessively, bringing it too close to the ground and creating a safety risk. Real-time monitoring of the sag value enables dynamic capacity configuration, thereby reducing safety risks and improving the efficiency of the transmission line. Distributed acoustic sensing based on chirped-pulse phase-sensitive optical time-domain reflectometry (CP- 桅 OTDR) can be used to measure the vibration induced by wind on the cable line taking advantage of the optical fiber already deployed in the power line. An analysis of the recovered strain in the frequency domain reveals multiple frequency components related to the cable鈥檚 current mechanical state. By identifying the fundamental frequency, it becomes possible to quantitatively calculate the sag. Tracking the central frequency of each span allows for the monitoring of the sag for each span of the line using just one single-end interrogator
    corecore