129 research outputs found

    EPIE Dataset: A Corpus For Possible Idiomatic Expressions

    Full text link
    Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores

    Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

    Get PDF
    Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS\u2708) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (?^[k] ? ? ?) and sum-product-of-constant-degree-polynomials (?^[k] ? ? ?^[?]), for constants k, ?, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC\u2705; Kayal & Saxena, CCC\u2706; Saxena & Seshadhri, FOCS\u2710, STOC\u2711); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP\u2711; Saha,Saxena & Saptharishi, Comput.Compl.\u2713; Forbes, FOCS\u2715; Kumar & Saraf, CCC\u2716); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS\u2709; Shpilka, STOC\u2719; Peleg & Shpilka, CCC\u2720, STOC\u2721). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for ?^[k] ? ? ?. Further, we give the first quasipolynomial time blackbox PIT for both ?^[k] ? ? ? and ?^[k] ? ? ?^[?]. No subexponential time algorithm was known prior to this work (even if k = ? = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top ?-gate to ?
    • …
    corecore