23 research outputs found

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy

    Get PDF
    Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth

    Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury.

    No full text
    Abstract Advanced neuroimaging techniques have improved our understanding of microstructural changes in the preterm supratentorial brain as well as the cerebellum and its association with impaired neurodevelopmental outcomes. However, the metabolic interrogation of the developing cerebellum during the early postnatal period after preterm birth remains largely unknown. Our study investigates the relationship between cerebellar neurometabolites measured by proton magnetic spectroscopy (1H-MRS) in preterm infants with advancing post-menstrual age (PMA) and brain injury during ex-utero third trimester prior to term equivalent age (TEA). We prospectively enrolled and acquired high quality 1H-MRS at median 33.0 (IQR 31.6–35.2) weeks PMA from a voxel placed in the cerebellum of 53 premature infants born at a median gestational age of 27.0 (IQR 25.0–29.0) weeks. 1H-MRS data were processed using LCModel software to calculate absolute metabolite concentrations of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr). We noted positive correlations of cerebellar concentrations of NAA, Cho and Cr (Spearman correlations of 0.59, 0.64 and 0.52, respectively, p value < 0.0001) and negative correlation of Cho/Cr ratio (R −0.5, p value 0.0002) with advancing PMA. Moderate-to-severe cerebellar injury was noted on conventional magnetic resonance imaging (MRI) in 14 (26.4%) of the infants and were noted to have lower cerebellar NAA, Cho and Cr concentrations compared with those without injury (p value < 0.001). Several clinical complications of prematurity including necrotizing enterocolitis, systemic infections and bronchopulmonary dysplasia were associated with altered metabolite concentrations in the developing cerebellum. We report for the first time that ex-utero third trimester cerebellar metabolite concentrations are decreased in very preterm infants with moderate-to-severe structural cerebellar injury. We report increasing temporal trends of metabolite concentrations in the cerebellum with advancing PMA, which was impaired in infants with brain injury on MRI and may have early diagnostic and prognostic value in predicting neurodevelopmental outcomes in very preterm infants

    Non-invasive measurement of biochemical profiles in the healthy fetal brain

    No full text
    © 2020 The Author(s) Proton magnetic resonance spectroscopy (1H-MRS) of the fetal brain can be used to study emerging metabolite profiles in the developing brain. Identifying early deviations in brain metabolic profiles in high-risk fetuses may offer important adjunct clinical information to improve surveillance and management during pregnancy. Objective: To investigate the normative trajectory of the fetal brain metabolites during the second half of gestation, and to determine the impact of using different Cramer-Rao Lower Bounds (CRLB) threshold on metabolite measurements using magnetic resonance spectroscopy. Study design: We prospectively enrolled 219 pregnant women with normal fetal ultrasound and biometric measures. We performed a total of 331 fetal 1H-MRS studies with gestational age in the rage of 18–39 weeks with 112 of the enrolled participants scanned twice. All the spectra in this study were acquired on a GE 1.5 T scanner using long echo-time of 144 ​ms and analyzed in LCModel. Results: We successfully acquired and analyzed fetal 1H-MRS with a success rate of 93%. We observed increases in total NAA, total creatine, total choline, scyllo inositol and total NAA-to-total choline ratio with advancing GA. Our results also showed faster increases in total NAA and total NAA-to-total choline ratio during the third trimester compared to the second trimester. We also observed faster increases in total choline and total NAA in female fetuses. Increasing the Cramer-Rao lower bounds threshold progressively from 100% to 40%–20% increased the mean metabolite concentrations and decreased the number of observations available for analysis. Conclusion: We report serial fetal brain biochemical profiles in a large cohort of health fetuses studied twice in gestation with a high success rate in the second and third trimester of pregnancy. We present normative in-vivo fetal brain metabolite trajectories over a 21-week gestational period which can be used to non-invasively measure and monitor brain biochemistry in the healthy and high-risk fetus

    Age and Sex Influences Gamma-aminobutyric Acid Concentrations in the Developing Brain of Very Premature Infants

    No full text
    © 2020, The Author(s). Gamma-aminobutyric acid (GABA) and glutamate are principal neurotransmitters essential for late gestational brain development and may play an important role in prematurity-related brain injury. In vivo investigation of GABA in the preterm infant with standard proton magnetic resonance spectroscopy (1H-MRS) has been limited due to its low concentrations in the developing brain, and overlap in the spectrum by other dominant metabolites. We describe early postnatal profiles of in vivo GABA and glutamate concentrations in the developing preterm brain measured by using the J-difference editing technique, Mescher-Garwood point resolved spectroscopy. We prospectively enrolled very preterm infants born ≤32 weeks gestational age and non-sedated 1H-MRS (echo time 68 ms, relaxation time 2000 ms, 256 signal averages) was acquired on a 3 Tesla magnetic resonance imaging scanner from a right frontal lobe voxel. Concentrations of GABA + (with macromolecules) was measured from the J-difference spectra; whereas glutamate and composite glutamate + glutamine (Glx) were measured from the unedited (OFF) spectra and reported in institutional units. We acquired 42 reliable spectra from 38 preterm infants without structural brain injury [median gestational age at birth of 28.0 (IQR 26.0, 28.9) weeks; 19 males (50%)] at a median postmenstrual age of 38.4 (range 33.4 to 46.4) weeks. With advancing post-menstrual age, the concentrations of glutamate OFF increased significantly, adjusted for co-variates (generalized estimating equation β = 0.22, p = 0.02). Advancing postnatal weeks of life at the time of imaging positively correlated with GABA + (β = 0.06, p = 0.02), glutamate OFF (β = 0.11, p = 0.02) and Glx OFF (β = 0.12, p = 0.04). Male infants had higher GABA + (1.66 ± 0.07 vs. 1.33 ± 0.11, p = 0.01) concentrations compared with female infants. For the first time, we report the early ex-utero developmental profile of in vivo GABA and glutamate stratified by age and sex in the developing brain of very preterm infants. This data may provide novel insights into the pathophysiology of neurodevelopmental disabilities reported in preterm infants even in the absence of structural brain injury
    corecore