8,341 research outputs found
Synthesising and utilising complex evidence to inform policy in education and health.
Oslo, Norway, May 19 to 21, 200
A knowledge based system for valuing variations in civil engineering works: a user centred approach
There has been much evidence that valuing variations in construction projects can lead to conflicts and disputes leading to loss of time, efficiency, and productivity. One of the reasons for these conflicts and disputes concerns the subjectivity of the project stakeholders involved in the process. One way to minimise this is to capture and collate the knowledge and perceptions of the different parties involved in order to develop a robust mechanism for valuing variations. Focusing on the development of such a mechanism, the development of a Knowledge Based System (KBS) for valuing variations in civil engineering work is described. Evaluation of the KBS involved demonstration to practitioners in the construction industry to support the contents of the knowledge base and perceived usability and acceptance of the system. Results support the novelty, contents, usability, and acceptance of the system, and also identify further potential developments of the KBS
On Holiday! Policy and provision for disabled children and their families
This summary describes some findings from the On Holiday! study, carried out by the Thomas Coram Research Unit between 2004 and 2006 and funded by DfES. The study investigated the experiences of disabled children and their families outside school time and especially during the school holidays. The study took an approach informed by a social model of disability, one which emphasises the social construction of disability, rather than impairment
A First Derivative Potts Model for Segmentation and Denoising Using ILP
Unsupervised image segmentation and denoising are two fundamental tasks in
image processing. Usually, graph based models such as multicut are used for
segmentation and variational models are employed for denoising. Our approach
addresses both problems at the same time. We propose a novel ILP formulation of
the first derivative Potts model with the data term, where binary
variables are introduced to deal with the norm of the regularization
term. The ILP is then solved by a standard off-the-shelf MIP solver. Numerical
experiments are compared with the multicut problem.Comment: 6 pages, 2 figures. To appear at Proceedings of International
Conference on Operations Research 2017, Berli
Recommended from our members
Understanding the Chlorine Isotopic Compositions of Apatites in Lunar Basalts
Horizontal flow fields observed in Hinode G-band images. I. Methods
Context: The interaction of plasma motions and magnetic fields is an
important mechanism, which drives solar activity in all its facets. For
example, photospheric flows are responsible for the advection of magnetic flux,
the redistribution of flux during the decay of sunspots, and the built-up of
magnetic shear in flaring active regions. Aims: Systematic studies based on
G-band data from the Japanese Hinode mission provide the means to gather
statistical properties of horizontal flow fields. This facilitates comparative
studies of solar features, e.g., G-band bright points, magnetic knots, pores,
and sunspots at various stages of evolution and in distinct magnetic
environments, thus, enhancing our understanding of the dynamic Sun. Methods: We
adapted Local Correlation Tracking (LCT) to measure horizontal flow fields
based on G-band images obtained with the Solar Optical Telescope on board
Hinode. In total about 200 time-series with a duration between 1-16 h and a
cadence between 15-90 s were analyzed. Selecting both a high-cadence (dt = 15
s) and a long-duration (dT = 16 h) time-series enabled us to optimize and
validate the LCT input parameters, hence, ensuring a robust, reliable, uniform,
and accurate processing of a huge data volume. Results: The LCT algorithm
produces best results for G-band images having a cadence of 60-90 s. If the
cadence is lower, the velocity of slowly moving features will not be reliably
detected. If the cadence is higher, the scene on the Sun will have evolved too
much to bear any resemblance with the earlier situation. Consequently, in both
instances horizontal proper motions are underestimated. The most reliable and
yet detailed flow maps are produced using a Gaussian kernel with a size of 2560
km x 2560 km and a full-width-at-half-maximum (FWHM) of 1200 km (corresponding
to the size of a typical granule) as sampling window.Comment: 12 pages, 8 figures, 4 tables, accepted for publication in Astronomy
and Astrophysic
- …