443 research outputs found

    Potentiation of photodynamic therapy of cancer by complement: the effect of γ-inulin

    Get PDF
    Host response elicited by photodynamic therapy (PDT) of cancerous lesions is a critical contributor to the clinical outcome, and complement system has emerged as its important element. Amplification of complement action was shown to improve tumour PDT response. In search of a clinically relevant complement activator for use as a PDT adjuvant, this study focused on γ-inulin and examined its effects on PDT response of mouse tumours. Intralesional γ-inulin (0.1 mg mouse−1) delivered immediately after PDT rivaled zymosan (potent classical complement activator) in delaying the recurrence of B16BL6 melanomas. This effect of γ-inulin was further enhanced by IFN-γ pretreatment. Tumour C3 protein levels, already elevated after individual PDT or γ-inulin treatments, increased much higher after their combination. With fibrosarcomas MCA205 and FsaR, adjuvant γ-inulin proved highly effective in reducing recurrence rates following PDT using four different photosensitisers (BPD, ce6, Photofrin, and mTHPC). At 3 days after PDT plus γ-inulin treatment, over 50% of cells found at the tumour site were CTLs engaged in killing specific targets via perforin–granzyme pathway. This study demonstrates that γ-inulin is highly effective PDT adjuvant and suggests that by amplifying the activation of complement system, this agent potentiates the development of CTL-mediated immunity against PDT-treated tumours

    TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model

    Get PDF
    TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer

    Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells.

    Get PDF
    Many cancer entities and their associated cell line models are highly heterogeneous in their responsiveness to apoptosis inducers and, despite a detailed understanding of the underlying signaling networks, cell death susceptibility currently cannot be predicted reliably from protein expression profiles. Here, we demonstrate that an integration of quantitative apoptosis protein expression data with pathway knowledge can predict the cell death responsiveness of melanoma cell lines. By a total of 612 measurements, we determined the absolute expression (nM) of 17 core apoptosis regulators in a panel of 11 melanoma cell lines, and enriched these data with systems-level information on apoptosis pathway topology. By applying multivariate statistical analysis and multi-dimensional pattern recognition algorithms, the responsiveness of individual cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or dacarbazine (DTIC) could be predicted with very high accuracy (91 and 82% correct predictions), and the most effective treatment option for individual cell lines could be pre-determined in silico. In contrast, cell death responsiveness was poorly predicted when not taking knowledge on protein-protein interactions into account (55 and 36% correct predictions). We also generated mathematical predictions on whether anti-apoptotic Bcl-2 family members or x-linked inhibitor of apoptosis protein (XIAP) can be targeted to enhance TRAIL responsiveness in individual cell lines. Subsequent experiments, making use of pharmacological Bcl-2/Bcl-xL inhibition or siRNA-based XIAP depletion, confirmed the accuracy of these predictions. We therefore demonstrate that cell death responsiveness to TRAIL or DTIC can be predicted reliably in a large number of melanoma cell lines when investigating expression patterns of apoptosis regulators in the context of their network-level interplay. The capacity to predict responsiveness at the cellular level may contribute to personalizing anti-cancer treatments in the future

    Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells

    Get PDF
    The incidence of distant metastases is higher in the tumours with low oxygen pressure than in those with high oxygen pressure. It is well known that hypoxia induces the transcription of various genes involved in angiogenesis and anaerobic metabolism necessary for the growth of tumour cells in vivo, suggesting that hypoxia may also induce the transcription of metastasis-associated genes. We sought to identify the metastasis-associated genes differentially expressed in tumour cells under hypoxic conditions with the use of a DNA microarray system. We found that hypoxia enhanced the expression of autocrine motility factor mRNA in various cancer cells and also enhanced the random motility of pancreatic cancer cells. Autocrine motility factor inhibitors abrogated the increase of motility under hypoxic conditions. In order to explore the roles of hypoxia-inducible factor-1α, we established hypoxia-inducible factor-1α-transfectants and dominant negative hypoxia-inducible factor-1α-transfectants. Transfection with hypoxia-inducible factor-1α and dominant-negative hypoxia-inducible factor-1α enhanced and suppressed the expression of autocrine motility factor/phosphohexase isomerase/neuroleukin mRNA and the random motility, respectively. These results suggest that hypoxia may promote the metastatic potential of cancer cells through the enhanced autocrine motility factor/phosphohexase isomerase/neuroleukin mRNA expression and that the disruption of the hypoxia-inducible factor-1 pathway may be an effective treatment for metastasis

    NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer

    Get PDF
    The most lethal aspects of gastric adenocarcinoma (GA) are its invasive and metastatic properties. This aggressive phenotype remains poorly understood. We have recently identified neuroepithelial cell transforming gene 1 (NET1), a guanine exchange factor (GEF), as a novel GA-associated gene. Neuroepithelial cell transforming gene 1 expression is enhanced in GA and it is of functional importance in cell invasion. In this study, we demonstrate the activity of NET1 in driving cytoskeletal rearrangement, a key pathological mechanism in gastric tumour cell migration and invasion. Neuroepithelial cell transforming gene 1 expression was increased 10-fold in response to treatment with lysophosphatidic acid (LPA), resulting in an increase in active levels of RhoA and a 2-fold increase in cell invasion. Lysophosphatidic acid-induced cell invasion and migration were significantly inhibited using either NET1 siRNA or a RhoA inhibitor (C3 exoenzyme), thus indicating the activity of both NET1 and RhoA in gastric cancer progression. Furthermore, LPA-induced invasion and migration were also significantly reduced in the presence of cytochalasin D, an inhibitor of cytoskeletal rearrangements. Neuroepithelial cell transforming gene 1 knockdown resulted in AGS cell rounding and a loss of actin filament organisation, demonstrating the function of NET1 in actin organisation. These data highlight the importance of NET1 as a driver of tumour cell invasion, an activity mediated by RhoA activation and cytoskeletal reorganisation

    Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review

    Get PDF
    Background Biomarkers that can predict the prognosis of colorectal cancer (CRC) patients and that can stratify high-risk early stage patients from low-risk early stage patients are urgently needed for better management of CRC. During the last decades, a large variety of prognostic DNA methylation markers has been published in the literature. However, to date, none of these markers are used in clinical practice. Methods To obtain an overview of the number of published prognostic methylation markers for CRC, the number of markers that was validated independently, and the current level of evidence (LoE), we conducted a systematic review of PubMed, EMBASE, and MEDLINE. In addition, we scored studies based on the REMARK guidelines that were established in order to attain more transparency and complete reporting of prognostic biomarker studies. Eighty-three studies reporting on 123 methylation markers fulfilled the study entry criteria and were scored according to REMARK. Results Sixty-three studies investigated single methylation markers, whereas 20 studies reported combinations of methylation markers. We observed substantial variation regarding the reporting of sample sizes and patient characteristics, statistical analyses, and methodology. The median (range) REMARK score for the studies was 10.7 points (4.5 to 17.5) out of a maximum of 20 possible points. The median REMARK score was lower in studies, which reported a p value below 0.05 versus those, which did not (p = 0.005). A borderline statistically significant association was observed between the reported p value of the survival analysis and the size of the study population (p = 0.051). Only 23 out of 123 markers (17%) were investigated in two or more study series. For 12 markers, and two multimarker panels, consistent results were reported in two or more study series. For four markers, the current LoE is level II, for all other markers, the LoE is lower. Conclusion This systematic review reflects that adequate reporting according to REMARK and validation of prognostic methylation markers is absent in the majority of CRC methylation marker studies. However, this systematic review provides a comprehensive overview of published prognostic methylation markers for CRC and highlights the most promising markers that have been published in the last two decades

    Chance mechanisms affecting the burden of metastases

    Get PDF
    BACKGROUND: The burden of cancer metastases within an individual is commonly used to clinically characterize a tumor's biological behavior. Assessments like these implicitly assume that spurious effects can be discounted. Here the influence of chance on the burden of metastasis is studied to determine whether or not this assumption is valid. METHODS: Monte Carlo simulations were performed to estimate tumor burdens sustained by individuals with cancer, based upon empirically derived and validated models for the number and size distributions of metastases. Factors related to the intrinsic metastatic potential of tumors and their host microenvironments were kept constant, to more clearly demonstrate the contribution from chance. RESULTS: Under otherwise identical conditions, both the simulated numbers and the sizes of metastases were highly variable. Comparable individuals could sustain anywhere from no metastases to scores of metastases, and the sizes of the metastases ranged from microscopic to macroscopic. Despite the marked variability in the number and sizes of the metastases, their respective growth times were rather more narrowly distributed. In such situations multiple occult metastases could develop into fully overt lesions within a comparatively short time period. CONCLUSION: Chance can have a major effect on the burden of metastases. Random variability can be so great as to make individual assessments of tumor biology unreliable, yet constrained enough to lead to the apparently simultaneous appearance of multiple overt metastases
    corecore