400 research outputs found
Recommended from our members
Passing for Portuguese: One Family’s Struggle with Race and Identity in America
Histor
Distribution and Female Reproductive State Differences in Orexigenic and Anorexigenic Neurons in the Brain of the Mouthbrooding African Cichlid Fish, Astatotilapia burtoni
The integration of reproduction and metabolism is necessary for the survival and continuation of a species. While the neural circuits controlling energy homeostasis have been well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are not conclusively defined. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because during their parental care phase, females undergo a two-week period of forced starvation while holding developing young in their buccal cavity. To test the hypothesis that candidate neuropeptides known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry or in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AgRP) and appetite-inhibiting peptides (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, POMC) in the cichlid fish brain. NPY, AgRP, CART, and pomc somata were localized to the lateral tuberal nucleus (NLT), the putative homolog of the arcuate nucleus, as well as other brain regions, and fiber distributions were similar to other teleosts as well as to mammals. To test whether conserved neuropeptide-containing neurons varied with reproductive state, we also quantified neuron somata size in the NLT as a proxy for their involvement in regulating changes in energy status and reproductive condition. Our results show that gravid females had larger NPY and AgRP neurons in the NLT compared to brooding females, but brooding females had larger POMC neurons compared to gravid females. CART neuron size did not differ between the two reproductive states. Thus, larger appetite-stimulating neurons (NPY, AgRP) likely promote feeding while females are gravid, while larger POMC neurons may act as a satiety signal to inhibit food intake during mouthbrooding. Hypothalamic mRNA levels for npy, agrp, pomc-α, cart 2 and cart 4 were also measured, and while AgRP mRNA levels were higher in gravid compared to brooding females, the remaining gene products did not differ between reproductive states. Collectively, however, our data suggest a potential role for NPY, AgRP, POMC and CART in regulating food intake in A. burtoni females during varying reproductive states
High fat diet deviates PtC-specific B1 B cell phagocytosis in obese mice
Phagocytosis had been attributed predominantly to "professional" phagocytes such as macrophages, which play critical roles in adipose tissue inflammation. However, recently, macrophage-like phagocytic activity has been reported in B1 B lymphocytes. Intrigued by the long-established correlation between high fat diet (HFD)-induced obesity and immune dysfunction, we investigated how HFD affects B1 B cell phagocytosis. A significant number of B1 B cells recognize phosphatidylcholine (PtC), a common phospholipid component of cell membrane. We report here that unlike macrophages, B1 B cells have a unique PtC-specific phagocytic function. In the presence of both PtC-coated and non-PtC control fluorescent nano-particles, B1 B cells from healthy lean mice selectively engulfed PtC-coated beads, whereas B1 B cells from HFD-fed obese mice non-discriminately phagocytosed both PtC-coated and control beads. Morphologically, B1 B cells from obese mice resembled macrophages, displaying enlarged cytosol and engulfed more beads. Our study suggests for the first time that HFD can affect B1 B cell phagocytosis, substantiating the link of HFD-induced obesity and immune deviation.R21 AR063387 - NIAMS NIH HHS; R25 CA153955 - NCI NIH HHS; UL1 TR000157 - NCATS NIH HH
Robust Detection of Dynamic Community Structure in Networks
We describe techniques for the robust detection of community structure in
some classes of time-dependent networks. Specifically, we consider the use of
statistical null models for facilitating the principled identification of
structural modules in semi-decomposable systems. Null models play an important
role both in the optimization of quality functions such as modularity and in
the subsequent assessment of the statistical validity of identified community
structure. We examine the sensitivity of such methods to model parameters and
show how comparisons to null models can help identify system scales. By
considering a large number of optimizations, we quantify the variance of
network diagnostics over optimizations (`optimization variance') and over
randomizations of network structure (`randomization variance'). Because the
modularity quality function typically has a large number of nearly-degenerate
local optima for networks constructed using real data, we develop a method to
construct representative partitions that uses a null model to correct for
statistical noise in sets of partitions. To illustrate our results, we employ
ensembles of time-dependent networks extracted from both nonlinear oscillators
and empirical neuroscience data.Comment: 18 pages, 11 figure
Distribution and female reproductive state differences in orexigenic and anorexigenic neurons in the brain of the mouth brooding African cichlid fish, Astatotilapia burtoni
© 2017 Wiley Periodicals, Inc. Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide-containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AGRP) and appetite-inhibiting (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, pomc1a) neurons in the brain. NPY, AGRP, CART, and pomc1a somata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had larger pomc1a neurons compared to gravid females. Hypothalamic agrp mRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite-stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while larger pomc1a neurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status in A. burtoni females during varying metabolic and reproductive demands
Prosecuting Domestic Abuse in England and Wales: Feminism, Neoliberalism and the Survivor's Voice
The Crown Prosecution Service (CPS) regards domestic abuse offences as 'particularly serious' and prosecutors are told that it will be rare that criminal proceedings will not be in the 'public interest'. But intimate partner abuse has not always enjoyed such prosecutorial commitment. Criminal justice responses in the past tended to reflect norms that sought to preserve the family unit and prosecutorial pursuit was consequently infrequent. Now that prosecution is invariably expected, this thesis is particularly concerned with the situation when a victim expresses her wish for its discontinuance. Using empirical research with prosecutors, the thesis explores current CPS working practices in these circumstances. It identifies a 'tenacious' CPS 'working practice' in relation to domestic abuse. Seeking to unpick some of the discourses and perspectives that may have contributed to the current commitment to prosecutions, the thesis sets the case study within the context of the women's movement and an era of neoliberalism. It identifies key values, philosophies and ideologies of the two theoretical frameworks - feminism and neoliberalism - that inform and shape the prosecutorial approach. The thesis proposes a foundation for theoretically informed prosecutorial praxis in the area of domestic abuse by reconceiving the legal subject, based on vulnerability theory, relational autonomy and the capabilities approach. Moreover, through thematic analysis of a sample of interviews with women who have experienced domestic abuse, it considers the consequences of the apparent turn to criminalisation. By uncovering women's varied and evolving legal consciousness as they encounter their abusive relationship, the thesis demonstrates the need for sensitive and nuanced prosecutorial responses on a case-by-case basis (in line with a 'survivor-defined' approach). Thus, the qualitative work identifies occasions when criminal prosecution meets women's needs, falls short or even merits abandonment thereby challenging criminal law as the pre-eminent solution to intimate partner abuse. Finally, by exposing the ways in which criminal prosecutions impact female victims of domestic abuse, the thesis reveals how criminal law and its processes can play a part in gendering subjectivities and limiting women's status
Hair and salivary cortisol and their relationship with lifestyle, mood and cognitive outcomes in premanifest Huntington’s disease
Salivary cortisol dysrhythmias have been reported in some, but not all studies assessing hypothalamic–pituitary–adrenal (HPA) axis function in Huntington’s disease (HD). These differences are presumed to be due to environmental influences on temporal salivary cortisol measurement. Further exploration of HPA-axis function using a more stable and longer-term measure, such as hair cortisol, is needed to confirm earlier findings. This study aimed to evaluate hair and salivary cortisol concentrations and their associations with clinical and lifestyle outcomes in individuals with premanifest HD (n = 26) compared to healthy controls (n = 14). Participants provided saliva and hair samples and data were collected on clinical disease outcomes, mood, cognition, physical activity, cognitive reserve, sleep quality and social network size to investigate relationships between clinical and lifestyle outcomes and cortisol concentrations. Hair and salivary cortisol concentrations did not significantly differ between the premanifest HD and control groups. No significant associations were observed between hair or salivary cortisol concentrations and cognitive, mood or lifestyle outcomes. However, hair cortisol concentrations were significantly associated with disease outcomes in individuals with premanifest HD. Significant associations between hair cortisol concentrations and measures of disease burden and onset may suggest a potential disease marker and should be explored longitudinally in a larger sample of individuals with HD
- …