61 research outputs found
SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells.
International audienceSAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response
Inhibition of Human Immunodeficiency Virus Type 1 Env-Mediated Fusion by DC-SIGN
DC-SIGN, a lectin expressed on dendritic cell and macrophage subsets, binds to human immunodeficiency virus Env glycoproteins, allowing capture of viral particles. Captured virions either infect target cells or are efficiently transmitted to lymphocytes. Cellular mechanisms underlying the effects of DC-SIGN remain poorly understood. Here we have analyzed the effects of DC-SIGN on viral entry and on syncytium formation induced by Env glycoproteins. The lectin enhanced susceptibility to viral infection and dramatically increased virion internalization. Captured virions accumulated in the vesicular pathway, and their access to the cytosol was altered. Strikingly, the presence of DC-SIGN on target cells inhibited their ability to form syncytia with Env-expressing cells. However, increasing CD4 surface levels on target cells alleviated this inhibitory effect of DC-SIGN. Moreover, the potency of the viral fusion inhibitor T-20 was not affected in DC-SIGN-expressing cells. Altogether, our results indicate that DC-SIGN exerts subtle and complex effects during early steps of HIV type 1 replication. DC-SIGN facilitates capture and accumulation of viral particles in a vesicular compartment and inhibits viral fusion. Competition between CD4 and DC-SIGN for Env binding likely affects virus access to the cytosol and syncytium formation
Antibody Neutralization of HIV-1 Crossing the Blood-Brain Barrier
We thank the NIH AIDS Reagent Program (Division of AIDS, NIAID, NIH) for contributing reagents. We also thank the UTechS Photonic BioImaging/C2RT supported by the French National Research Agency (ANR-10-INSB-04-01, Investments for the Future), by Conseil de la RĂ©gion Ile-de-France (Domaine dâIntĂ©rĂȘt Majeur DIM1HEALTH), and by Fondation Française pour la Recherche MĂ©dicale (Program Grands Equipements), and the Image Analysis Hub/C2RT.International audienceHIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection
Inefficient Human Immunodeficiency Virus Replication in Mobile Lymphocytes
Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of âvirological synapsesâ between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs
The effects of HIV-1 Nef on CD4 surface expression and viral infectivity in lymphoid cells are independent of rafts.
International audienceThe HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication
DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation.
International audienceDendritic cells (DCs) facilitate HIV-1 spread in the host by capturing virions and transferring them to permissive lymphocytes in lymphoid organs. Lectins such as DC-specific ICAM-grabbing non-integrin (DC-SIGN) are involved in HIV-1 uptake by DCs, through high-affinity binding to viral envelope glycoproteins. We examined the role of DC-SIGN on the fate of incoming virions and on major histocompatibility complex class I (MHC-I)-restricted HIV-1 antigen presentation. We show that DC-SIGN expression in B-cell lines dramatically enhances viral internalization. In these cells, and also in primary DCs, most of the captured virions are rapidly degraded, likely in a lysosomal compartment. In addition, a fraction of incoming viral material is processed by the proteasome, leading to activation of anti-HIV-specific cytotoxic T lymphocytes (CTLs) by DC-SIGN-expressing cells. In DCs, DC-SIGN is not the only receptor involved, and redundant pathways of virus capture leading to antigen presentation likely coexist. Altogether, our results highlight new aspects of DC-SIGN interactions with HIV-1. The lectin does not significantly protect captured virions against degradation and promotes MHC-I exogenous presentation of HIV-1 antigens
IFITM1 inhibits trophoblast invasion and is induced in placentas associated with IFN-mediated pregnancy diseases
Summary: Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-ÎČ demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders
SAMHD1 Limits HIV-1 Antigen Presentation by Monocyte-Derived Dendritic Cells.
International audienceMonocyte-derived dendritic cells (MDDC) stimulate CD8 cytotoxic T lymphocytes (CTL) by presenting endogenous and exogenous viral peptides via major histocompatibility complex class I (MHC-I) molecules. MDDC are poorly susceptible to HIV-1, in part due to the presence of SAMHD1, a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and degrades viral RNA. Vpx, an HIV-2/SIVsm protein absent from HIV-1, antagonizes SAMHD1 by inducing its degradation. The impact of SAMHD1 on the adaptive cellular immune response remains poorly characterized. Here, we asked whether SAMHD1 modulates MHC-I-restricted HIV-1 antigen presentation. Untreated MDDC or MDDC pretreated with Vpx were exposed to HIV-1, and antigen presentation was examined by monitoring the activation of an HIV-1 Gag-specific CTL clone. SAMHD1 depletion strongly enhanced productive infection of MDDC as well as endogenous HIV-1 antigen presentation. Time-lapse microscopy analysis demonstrated that in the absence of SAMHD1, the CTL rapidly killed infected MDDC. We also report that various transmitted/founder (T/F) HIV-1 strains poorly infected MDDC and, as a consequence, did not stimulate CTL. Vesicular stomatitis virus glycoprotein (VSV-G) pseudotyping of T/F alleviated a block in viral entry and induced antigen presentation only in the absence of SAMHD1. Furthermore, by using another CTL clone that mostly recognizes incoming HIV-1 antigens, we demonstrate that SAMHD1 does not influence exogenous viral antigen presentation. Altogether, our results demonstrate that the antiviral activity of SAMHD1 impacts antigen presentation by DC, highlighting the link that exists between restriction factors and adaptive immune responses. Upon viral infection, DC may present antigens derived from incoming viral material in the absence of productive infection of DC or from newly synthesized viral proteins. In the case of HIV, productive infection of DC is blocked at an early postentry step. This is due to the presence of SAMHD1, a cellular enzyme that depletes intracellular levels of dNTPs and inhibits viral reverse transcription. We show that the depletion of SAMHD1 in DCs strongly stimulates the presentation of viral antigens derived from newly produced viral proteins, leading to the activation of HIV-1-specific cytotoxic T lymphocytes (CTL). We further show in real time that the enhanced activation of CTL leads to killing of infected DCs. Our results indicate that the antiviral activity of SAMHD1 not only impacts HIV replication but also impacts antigen presentation by DC. They highlight the link that exists between restriction factors and adaptive immune responses
- âŠ