665 research outputs found
Income Elasticity of Child Labor: Do Cash Transfers have an Impact on the Poorest Children?
AbstractThe possible nonlinearity of the income elasticity of child labor has been at the center of the debate regarding both its causes and the policy instruments to address it. We contribute to this debate providing theoretical and empirical novel results. From a theoretical point of view, for any given transfer size, there is a critical level of household income below which an increase in income has no impact on child labor and education. We estimate the causal impact of an increase in income on child labor and education exploiting the random allocation of the Child Grant Programme, an unconditional cash transfer (CT), in Lesotho. We show that the poorest households do not increase investment in children's human capital, while relatively less poor households reduce child labor and increase education. In policy terms, the results indicate that CTs might not be always effective to support the investment in children's human capital of the poorest households. Beside the integration with other measures, making the amount of transfer depends of the level of deprivation of the household, might improve CT effectiveness
Quality of Life and psychopathology in adults who underwent Hematopoietic Stem Cell Transplantation (HSCT) in childhood: a qualitative and quantitative analysis.
Background: Patients who undergo pediatric Hematopoietic Stem Cell Transplantation (HSCT) may experience long-term psychological sequelae and poor Quality of Life (QoL) in adulthood. This study aimed to investigate subjective illness experience, QoL, and psychopathology in young adults who have survived pediatric HSCT.
Method: The study involved patients treated with HSCT in the Hematology-Oncology Department between 1984 and 2007. Psychopathology and QoL were investigated using the SCL-90-R and SF-36. Socio-demographic and medical information was also collected. Finally, participants were asked to write a brief composition about their experiences of illness and care. Qualitative analysis of the texts was performed using T-LAB, an instrument for text analysis that allows the user to highlight the occurrences and co-occurrences of lemma. Quantitative analyses were performed using non-parametric tests (Spearman correlations, Kruskal-Wallis and Mann-Whitney tests).
Results: Twenty-one patients (9 males) participated in the study. No significant distress was found on the SCL-90 Global Severity Index, but it was found on specific scales. On the SF-36, lower scores were reported on scales referring to bodily pain, general health, and physical and social functioning. All the measures were significantly (p < 0.05) associated with specific socio-demographic and medical variables (gender, type of pathology, type of HSCT, time elapsed between communication of the need to transplant and effective transplantation, and days of hospitalization). With regard to the narrative analyses, males focused on expressions related to the body and medical therapies, while females focused on people they met during treatment, family members, and donors. Low general health and treatment with autologous HSCT were associated with memories about chemotherapy, radiotherapy, and the body parts involved, while high general health was associated with expressions focused on gratitude (V-Test \ub1 1.96).
Conclusion: Pediatric HSCT survivors are more likely to experience psychological distress and low QoL in adulthood compared with the general population. These aspects, along with survivors' subjective illness experience, show differences according to specific medical and socio-demographic variables. Studies are needed in order to improve the care and long-term follow-up of these families
Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn
<p>Abstract</p> <p>Background</p> <p>There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were made from lamina I - II neurons in rat spinal cord slices <it>in vitro </it>to examine the effect of opioids on TRP agonist-enhanced glutamatergic spontaneous miniature excitatory postsynaptic currents (EPSCs).</p> <p>Results</p> <p>Under basal conditions the μ-opioid agonist DAMGO (3 μM) reduced the rate of miniature EPSCs in 68% of neurons, while the δ- and κ-opioid agonists deltorphin-II (300 nM) and U69593 (300 nM) did so in 13 - 17% of neurons tested. The TRP agonists menthol (400 μM) and icilin (100 μM) both produced a Ca<sup>2+</sup>-dependent increase in miniature EPSC rate which was unaffected by the voltage dependent calcium channel (VDCC) blocker Cd<sup>2+</sup>. The proportion of neurons in which deltorphin-II reduced the miniature EPSC rate was enhanced in the presence of icilin (83%), but not menthol (0%). By contrast, the proportion of DAMGO and U69593 responders was unaltered in the presence of menthol (57%, 0%), or icilin (57%, 17%).</p> <p>Conclusions</p> <p>These findings demonstrate that δ-opioid receptor activation selectively inhibits inputs activated by icilin, whereas μ-opioid receptor activation has a more widespread effect on synaptic inputs to neurons in the superficial dorsal horn. These findings suggest that δ-opioids may provide a novel analgesic approach for specific, TRPA1-like mediated pain modalities.</p
The Gamma-Ray Imaging Spectrometer (GRIS): A new balloon-borne experiment for gamma-ray line astronomy
High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain
Gabapentin is a first-line therapy for neuropathic pain but its mechanisms and sites of action
remain uncertain. We investigated gabapentin-induced modulation of neuropathic pain following
spinal nerve ligation (SNL) in rats. Intravenous or intrathecal gabapentin reversed evoked
mechanical hypersensitivity, produced conditioned place preference (CPP) and dopamine release
in the nucleus accumbens (NAc) selectively in SNL rats. Spinal gabapentin also significantly
inhibited dorsal horn wide dynamic range (WDR) neuronal responses to a range of evoked stimuli
in SNL rats. In contrast, gabapentin microinjected bilaterally into the rostral anterior cingulate
cortex (rACC), produced CPP and elicited NAc dopamine release selectively in SNL rats but did
not reverse tactile allodynia and had marginal effects on WDR neuronal activity. Moreover,
blockade of endogenous opioid signaling in the rACC prevented intravenous gabapentin-induced
CPP and NAc dopamine release but failed to block its inhibition of tactile allodynia. Gabapentin
therefore can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced
spinal neuronal excitability, evoked hypersensitivity and ongoing pain and (b) selective supraspinal
modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with
previous findings of pain relief from non-opioid analgesics, gabapentin requires engagement of
rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits
reflected in learned pain motivated behaviors. These findings support the partial separation of
sensory and affective dimensions of pain in this experimental model and suggest that modulation
of affective-motivational qualities of pain may be the preferential mechanism of gabapentin’s
analgesic effects in patients
Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin
Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin
Evaluation of low doses BPA-induced perturbation of glycemia by toxicogen-omics points to a primary role of pancreatic islets and to the mechanism of toxicity
Epidemiologic and experimental studies have associated changes of blood glucose homeostasis to Bisphenol A (BPA) exposure. We took a toxicogenomic approach to investigate the mechanisms of low-dose (1 ? 10-9 M) BPA toxicity in ex vivo cultures of primary murine pancreatic islets and hepatocytes. Twenty-nine inhibited genes were identified in islets and none in exposed hepatocytes. Although their expression was slightly altered, their impaired cellular level, as a whole, resulted in specific phenotypic changes. Damage of mitochondrial function and metabolism, as predicted by bioinformatics analyses, was observed: BPA exposure led to a time-dependent decrease in mitochondrial membrane potential, to an increase of ROS cellular levels and, finally, to an induction of apoptosis, attributable to the bigger Bax/Bcl-2 ratio owing to activation of NF-[[ampi]]kappa;B pathway. Our data suggest a multifactorial mechanism for BPA toxicity in pancreatic islets with emphasis to mitochondria dysfunction and NF-[[ampi]]kappa;B activation. Finally, we assessed in vitro the viability of BPA-treated islets in stressing condition, as exposure to high glucose, evidencing a reduced ability of the exposed islets to respond to further damages. The result was confirmed in vivo evaluating the reduction of glycemia in hyperglycemic mice transplanted with control and BPA-treated pancreatic islets. The reported findings identify the pancreatic islet as the main target of BPA toxicity in impairing the glycemia. They suggest that the BPA exposure can weaken the response of the pancreatic islets to damages. The last observation could represent a broader concept whose consideration should lead to the development of experimental plans better reproducing the multiple exposure conditions
Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone
Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve–ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats, these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost, but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. By contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared with sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states, descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief
- …