22 research outputs found

    The impact of hydraulic retention time on the performance of two configurations of anaerobic pond for municipal sewage treatment

    Get PDF
    Anaerobic ponds have the potential to contribute to low carbon wastewater treatment, however are currently restricted by long hydraulic residence time (HRT) which leads to large land requirements. A two-stage anaerobic pond (SAP) design was trialled against a single-stage control (CAP) over four HRTs down to 0.5 days, to determine the lowest HRT at which the ponds could operate effectively. No statistical differences were observed in particulate removal between the ponds over all four HRTs, suggesting solids loading is not a critical factor in AP design. Significantly higher biogas production rates were observed in the SAP than the CAP at 1.5 d and 1.0 d HRT, and microbial community profiling suggests the two-stage design may be facilitating spatial separation of the anaerobic digestion process along reactor length. Hydrogenotrophic methanogensis dominated over aceticlastic, with acetate oxidisation a likely degradation pathway. Experimental tracer studies were compared to CFD simulations, with the SAP showing greater hydraulic efficiency, and differences more pronounced at shorter HRTs. Greater flow recirculation between baffles was observed in CFD velocity profiles, demonstrating baffles can dissipate preferential flow patterns and increase effective pond volume, especially at high flow rates. The study demonstrates the potential of APs to be operated at shorter HRTs in psychrophilic conditions, presenting an opportunity for use as pre-treatments (in place of septic tanks) and primary treatment for full wastewater flows. Two-stage designs should be investigated to separate the stages of the anaerobic digestion process by creating preferential conditions along the pond length

    The impact of hydraulic retention time on the performance of two configurations of anaerobic pond for municipal sewage treatment

    Get PDF
    Anaerobic ponds have the potential to contribute to low carbon wastewater treatment, however are currently restricted by long hydraulic residence time (HRT) which leads to large land requirements. A two-stage anaerobic pond (SAP) design was trialled against a single-stage control (CAP) over four HRTs down to 0.5 days, to determine the lowest HRT at which the ponds could operate effectively. No statistical differences were observed in particulate removal between the ponds over all four HRTs, suggesting solids loading is not a critical factor in AP design. Significantly higher biogas production rates were observed in the SAP than the CAP at 1.5 d and 1.0 d HRT, and microbial community profiling suggests the two-stage design may be facilitating spatial separation of the anaerobic digestion process along reactor length. Hydrogenotrophic methanogensis dominated over aceticlastic, with acetate oxidisation a likely degradation pathway. Experimental tracer studies were compared to CFD simulations, with the SAP showing greater hydraulic efficiency, and differences more pronounced at shorter HRTs. Greater flow recirculation between baffles was observed in CFD velocity profiles, demonstrating baffles can dissipate preferential flow patterns and increase effective pond volume, especially at high flow rates. The study demonstrates the potential of APs to be operated at shorter HRTs in psychrophilic conditions, presenting an opportunity for use as pre-treatments (in place of septic tanks) and primary treatment for full wastewater flows. Two-stage designs should be investigated to separate the stages of the anaerobic digestion process by creating preferential conditions along the pond length

    Development of a staged anaerobic pond for methane recovery from domestic wastewater

    Get PDF
    Since their inception in larger pond systems, the focus of anaerobic ponds has shifted from solids removal to optimising biogas production and reducing physical footprint to minimise land requirements. In this study, a horizontally baffled (HBAP) and vertically baffled (VBAP) anaerobic pond were compared. Distinct differences in the removal efficiency of COD fractions were observed, with particulate COD removal of 78% and 32%, and soluble COD removal of −26% and 19% in the HBAP and VBAP, respectively. A staged pond (SAP) was constructed through an HBAP placed upstream of a VBAP, with an additional HBAP used as a control (CAP). The SAP demonstrated superior biogas recovery potential over the control: methane production by the conclusion of the study was 6.09 and 9.04 LCH4 m−3 wastewater treated for the CAP and SAP, respectively. Methanogenic activity in the ponds was higher closer to the outlet, and hydrogenotrophic methanogenesis dominated over acetoclastic pathways

    Fungal outbreak in a show cave

    No full text
    Castañar de Ibor Cave (Spain) was discovered in 1967 and declared a Natural Monument in 1997. In 2003 the cave was opened to public visits. Despite of extensive control, on 26 August 2008 the cave walls and sediments appeared colonized by long, white fungal mycelia. This event was the result of an accidental input of detritus on the afternoon of 24 August 2008. We report here a fungal outbreak initiated by Mucor circinelloides and Fusarium solani and the methods used to control it

    Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells

    No full text
    A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anode-attached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-attached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m−3. A lower maximum power was generated in the thermophilic MFC (0.2 W m−3), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms

    Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves

    No full text
    Aerobiology of caves is still in its infancy. At present, no clear information has been generated on the limits of acceptance of fungal spores in air which permit classification of the atmosphere of a cave as not dangerous for the conservation of rock-art paintings. We had the unique opportunity to visit and sample different caves in Spain and France, under different managements. We obtained a collection of data related with contamination episodes that permitted the formulation of a tentative index of fungal hazard in show caves. This is supported by the concentration of fungal spores in the cave air, the knowledge of the cave history and management, and a detailed survey of the different halls of the caves. The index classifies the risks into five categories: category 1 identifies a cave without fungal problems, category 2 is an alarm signal for caves, category 3 is a cave threatened by fungi, category 4 is assigned to a cave already affected by fungi, and category 5 is a cave with an irreversible ecological disturbance. This index, a working hypothesis, is launched to promote interest and forum discussion and should be validated by the scientific community after being updated with more surveys and cave analyses carried out under different managements and with different contamination episodes

    Microbial mediation of complex subterranean mineral structures

    No full text
    Helictites—an enigmatic type of mineral structure occurring in some caves—differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO(3), and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes
    corecore