676 research outputs found
Al2O3 Surface Passivation Characterized on Hydrophobic and Hydrophilic c-Si by a Combination of QSSPC, CV, XPS and FTIR
Abstract In this work, the influence of the c-Si surface finishing (hydrophobic/hydrophilic) prior to the deposition of the Al2O3 passivation layer on the passivation quality is investigated. The samples are characterized by a combination of Quasi-Steady-State-PhotoConductance (QSSPC) Capacity-Conductance (CV), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transformed InfraRed (FTIR) measurements. Furthermore, FTIR measurements are used to determine the thickness of interfacial SiOx layer
Impact of firing on surface passivation of p-Si by SiO2/Al and SiO2/SiNx/Al stacks
Firing impacts on surface passivation provided by a SiO2 and SiO2/SiNx stack with evaporated Al films are studied by capacitance-based techniques on MIS capacitors. For devices with insulator layers consisting solely of as-deposited SiO2, the densities of either interface states (Dit) or fixed
charges (Qfc) are hardly influenced by firing. Capping the SiO2 layer with a SiNx layer results in a shift of the peak activation energy of Dit toward the valence band (Ev) of Si. Firing this SiO2/SiNx stack leads to an increase of Qfc, a reduction of Dit, and a moderate shift of peak activation energy of Dit toward Ev. Co-firing with the Al film on top significantly reduces the Qfc, Dit, and Dit peak activation energy, which is resulting from the atomic hydrogen passivation. These results are of particular interest for the development of solar cells with rear surface passivation and local contacts
Comparison between SiN x :H and hydrogen passivation of electromagnetically casted multicrystalline silicon material
International audienceThis work intends to compare two different passivation methods for electromagnetically continuous pulling silicon (EMCP): remote plasma hydrogenation and remote plasma enhanced CVD of SiN followed by high-temperature sintering. All experiments are carried out on textured and non-textured EMCP samples from the same ingot. To check the effect of high-temperature diffusion on EMCP, a n +-emitter is formed on one group of the samples using POCl 3 diffusion. Passivation capabilities of both techniques are checked using measurements of minority carrier lifetime by means of microwave photoconductance decay mapping. Solar cells are made to compare lifetime measurement with cell parameters.
Effect of COVID-19 pandemic on practice in European radiation oncology centers
ESTRO surveyed European radiation oncology department heads to evaluate the impact of COVID-19. Telemedicine was used in 78% of the departments, and 60% reported a decline in patient volume. Use of protective measures was implemented on a large scale, but shortages of personal protective equipment were present in more than half of the departments. (C) 2020 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 150 (2020) 40-42 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer
Radiation therapy (RT) is a valuable component of multimodal treatment for localized pancreatic cancer. Intraoperative radiation therapy (IORT) is a very precise RT modality to intensify the irradiation effect for cancer involving upper abdominal structures and organs, generally delivered with electrons (IOERT). Unresectable, borderline and resectable disease categories benefit from dose-escalated chemoradiation strategies in the context of active systemic therapy and potential radical surgery. Prolonged preoperative treatment may act as a filter for selecting patients with occult resistant metastatic disease. Encouraging survival rates have been documented in patients treated with preoperative chemoradiation followed by radical surgery and IOERT (>20 months median survival, >35% survival at 3 years). Intensive preoperative treatment, including induction chemotherapy followed by chemoradiation and an IOERT boost, appears to prolong long-term survival within the subset of patients who remain relapse-free for>2 years (>30 months median survival; >40% survival at 3 years). Improvement of local control through higher RT doses has an impact on the survival of patients with a lower tendency towards disease spread. IOERT is a well-accepted approach in the clinical scenario (maturity and reproducibility of results), and extremely accurate in terms of dose-deposition characteristics and normal tissue sparing. The technique can be adapted to systemic therapy and surgical progress. International guidelines (National Comprehensive Cancer Network or NCCN guidelines) currently recommend use of IOERT in cases of close surgical margins and residual disease. We hereby report the ESTRO/ACROP recommendations for performing IOERT in borderline-resectable pancreatic cancer
Nickel Silicide Formation Using Excimer Laser Annealing
AbstractIn this work, we report on a self-aligned nickel silicide formation technique based on excimer laser annealing (ELA). We evaluate this process for the front contact formation of industrial PERC type solar cells on random pyramid textured Si surfaces where damage to surface texture, emitter passivation, or to the shallow junction should be avoided or minimized. PERC type solar cells obtained by POCl3 diffusion were processed on large area (12.5x12.5cm2) CZ-Si. Self-aligned litho-free Ni/Cu contacts defined by ps-laser ablation of the SiO2/SiNx anti-reflective coating (ARC) and subsequent ELA of the Ni layer were compared to conventional Ag screen printed contacts.The novel ELA process results in an absolute gain in Jsc of 0.8mA/cm2 as well as a drop of 0.3Ω.cm2 in series resistance (Rs) compared to SP Ag contacts due to reduced shading and resistance losses. This leads to 0.5% absolute increase in efficiency from 19.3% to 19.7% since other characteristics (Voc, pFF) could be maintained to the same level. In this work, the best performing cell with the ELA process reached an outstanding 20.0% energy conversion efficiency with Jsc=39.3mA/cm2, Voc=649.8mV, and FF=78.3%
Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials
Introduction: the dose–volume effect of radiation therapy on breast tissue is poorly understood. We estimate NTCP parameters for breast fibrosis after external beam radiotherapy.Materials and methods: we pooled individual patient data of 5856 patients from 2 trials including whole breast irradiation followed with or without a boost. A two-compartment dose volume histogram model was used with boost volume as the first compartment and the remaining breast volume as second compartment. Results from START-pilot trial (n?=?1410) were used to test the predicted models.Results: 26.8% patients in the Cambridge trial (5?years) and 20.7% patients in the EORTC trial (10?years) developed moderate-severe breast fibrosis. The best fit NTCP parameters were BEUD3(50)?=?136.4?Gy, ?50?=?0.9 and n?=?0.011 for the Niemierko model and BEUD3(50)?=?132?Gy, m?=?0.35 and n?=?0.012 for the Lyman Kutcher Burman model. The observed rates of fibrosis in the START-pilot trial agreed well with the predicted rates.Conclusions: this large multi-centre pooled study suggests that the effect of volume parameter is small and the maximum RT dose is the most important parameter to influence breast fibrosis. A small value of volume parameter ‘n’ does not fit with the hypothesis that breast tissue is a parallel organ. However, this may reflect limitations in our current scoring system of fibrosi
Passivation of a Metal Contact with a Tunneling Layer
AbstractThe potential of contact passivation for increasing cell performance is indicated by several results reported in the literature. However, scant characterization of the tunneling layers used for that purpose has been reported. In this paper, contact passivation is investigated by insertion of an ultra-thin AlOx layer between an n-type emitter and a Ti/Pd/Ag contact. By using a 1.5nm thick layer, an increase of the minority carrier lifetime by a factor of 2.7 is achieved. Since current-voltage measurements indicate that an ohmic behavior is conserved for AlOx layers as thick as 1.5nm, a 1.5nm AlOx layer is found to be a candidate of choice for contact passivation
- …