93 research outputs found

    Molecular epidemiology of Giardia duodenalis and Cryptosporidium spp on swine farms in Ontario, Canada

    Get PDF
    A subset of swine farms in Ontario, Canada have been monitored for Cryptosporidium and Giardia. Fecal samples were collected from different stages of production as well as from manure pits. G. duodenalis cysts and Cryptosporidium spp. oocysts were detected in the manure samples using immunofluorescence microscopy. A nested PCR and sequencing method was performed to determine the genotypes. A mixed multivariable method was used to compare the prevalence of Cryptosporidium and Giardia in samples from different sources

    Monitoring of Salmonella, Campylobacter, Yersinia enterocolitica, E. coli 0157, and Listeria monocytogenes on a subset of Canadian swine farms

    Get PDF
    The objective of the present study was to investigate the occurrence of major bacterial foodborne pathogens in swine on a subset of Ontario swine farms between 2005 and 2007 In total, 359 samples from manure storage tanks and fresh pooled feces obtained from finisher pigs, sows, and weanlings were collected and tested Campylobacter, Salmonella, Y. enterocolitica, E coli 0157 and L monocytogenes were isolated from 36.5%, 31.5%, 5.8%, 3 3%, and 33% of samples, respectively. All E. coli O157 isolates were tested but none were determined to be E. coli O157:H7 Salmonella and Campylobacter were more likely to be detected from stored manure rather than fresh fecal samples. Y. enterocolitica tended to be detected more commonly from fresh samples than from manure pits

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    A review of hyperfibrinolysis in cats and dogs

    Get PDF
    The fibrinolytic system is activated concurrently with coagulation; it regulates haemostasis and prevents thrombosis by restricting clot formation to the area of vascular injury and dismantling the clot as healing occurs. Dysregulation of the fibrinolytic system, which results in hyperfibrinolysis, may manifest as clinically important haemorrhage. Hyperfibrinolysis occurs in cats and dogs secondary to a variety of congenital and acquired disorders. Acquired disorders associated with hyperfibrinolysis, such as trauma, cavitary effusions, liver disease and Angiostrongylus vasorum infection, are commonly encountered in primary care practice. In addition, delayed haemorrhage reported in greyhounds following trauma and routine surgical procedures has been attributed to a hyperfibrinolytic disorder, although this has yet to be characterised. The diagnosis of hyperfibrinolysis is challenging and, until recently, has relied on techniques that are not readily available outside referral hospitals. With the recent development of point‐of‐care viscoelastic techniques, assessment of fibrinolysis is now possible in referral practice. This will provide the opportunity to target haemorrhage due to hyperfibrinolysis with antifibrinolytic drugs and thereby reduce associated morbidity and mortality. The fibrinolytic system and the conditions associated with increased fibrinolytic activity in cats and dogs are the focus of this review article. In addition, laboratory and point‐of‐care techniques for assessing hyperfibrinolysis and antifibrinolytic treatment for patients with haemorrhage are reviewed

    Oncogene Activation Induces Metabolic Transformation Resulting in Insulin-Independence in Human Breast Cancer Cells

    Get PDF
    Normal breast epithelial cells require insulin and EGF for growth in serum-free media. We previously demonstrated that over expression of breast cancer oncogenes transforms MCF10A cells to an insulin-independent phenotype. Additionally, most breast cancer cell lines are insulin-independent for growth. In this study, we investigated the mechanism by which oncogene over expression transforms MCF10A cells to an insulin-independent phenotype. Analysis of the effects of various concentrations of insulin and/or IGF-I on proliferation of MCF10A cells demonstrated that some of the effects of insulin were independent from those of IGF-I, suggesting that oncogene over expression drives a true insulin-independent proliferative phenotype. To test this hypothesis, we examined metabolic functions of insulin signaling in insulin-dependent and insulin-independent cells. HER2 over expression in MCF10A cells resulted in glucose uptake in the absence of insulin at a rate equal to insulin-induced glucose uptake in non-transduced cells. We found that a diverse set of oncogenes induced the same result. To gain insight into how HER2 oncogene signaling affected increased insulin-independent glucose uptake we compared HER2-regulated gene expression signatures in MCF10A and HER2 over expressing MCF10A cells by differential analysis of time series gene expression data from cells treated with a HER2 inhibitor. This analysis identified genes specifically regulated by the HER2 oncogene, including VAMP8 and PHGDH, which have known functions in glucose uptake and processing of glycolytic intermediates, respectively. Moreover, these genes specifically implicated in HER2 oncogene-driven transformation are commonly altered in human breast cancer cells. These results highlight the diversity of oncogene effects on cell regulatory pathways and the importance of oncogene-driven metabolic transformation in breast cancer

    Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

    Get PDF
    Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.Susan G. Komen Breast Cancer Foundation (Fellowship)Life Sciences Research Foundation (Fellowship)W. M. Keck FoundationDavid H. Koch Cancer Research FundAlexander and Margaret Stewart TrustNational Institutes of Health (U.S.) (Grant CA103866

    Climate-sensitive health priorities in Nunatsiavut, Canada

    Get PDF
    Background: This exploratory study used participatory methods to identify, characterize, and rank climate-sensitive health priorities in Nunatsiavut, Labrador, Canada. Methods: A mixed method study design was used and involved collecting both qualitative and quantitative data at regional, community, and individual levels. In-depth interviews with regional health representatives were conducted throughout Nunatsiavut (n = 11). In addition, three PhotoVoice workshops were held with Rigolet community members (n = 11), where participants took photos of areas, items, or concepts that expressed how climate change is impacting their health. The workshop groups shared their photographs, discussed the stories and messages behind them, and then grouped photos into re-occurring themes. Two community surveys were administered in Rigolet to capture data on observed climatic and environmental changes in the area, and perceived impacts on health, wellbeing, and lifestyles (n = 187). Results: Climate-sensitive health pathways were described in terms of inter-relationships between environmental and social determinants of Inuit health. The climate-sensitive health priorities for the region included food security, water security, mental health and wellbeing, new hazards and safety concerns, and health services and delivery. Conclusions: The results highlight several climate-sensitive health priorities that are specific to the Nunatsiavut region, and suggest approaching health research and adaptation planning from an EcoHealth perspective

    Data for: Aortic valve calcifications as risk factor for major complications and reduced survival after transcatheter replacement

    No full text
    TAVI Majo

    TAVI Major

    No full text
    Raw Dat
    corecore