7 research outputs found
Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry
A C++ code for the solution of the relativistic Hartree-Bogoliubov theory in
coordinate space is presented. The theory describes a nucleus as a relativistic
system of baryons and mesons. The RHB model is applied in the self-consistent
mean-field approximation to the description of ground state properties of
spherical nuclei. Finite range interactions are included to describe pairing
correlations and the coupling to particle continuum states. Finite element
methods are used in the coordinate space discretization of the coupled system
of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and
Klein-Gordon equations for the meson fields. The bisection method is used in
the solution of the resulting generalized algebraic eigenvalue problem, and the
biconjugate gradient method for the systems of linear and nonlinear algebraic
equations, respectively.Comment: PostScript, 32 pages, to be published in Computer Physics
Communictions (1997
Relativistic Hartree-Bogoliubov theory in coordinate space: Finite element solution for a nuclear system with spherical symmetry
Abstract
A C++ code for the solution of the relativistic Hartree-Bogoliubov theory (RHB) in coordinate space is presented. The theory describes a nucleus as a relativistic system of baryons and mesons. The RHB model is applied in the self-consistent mean-field approximation to the description of ground state properties of spherical nuclei. Finite range interactions are included to describe pairing correlations and the coupling to particle continuum states. Finite element methods are used in the coordi...
Title of program: spnRHBfem.cc
Catalogue Id: ADFX_v1_0
Nature of problem
The ground-state of a spherical nucleus is described in the framework of relativistic Hartree-Bogoliubov theory in coordinate space. The model describes a nucleus as a relativistic system of baryons and mesons. Nucleons interact in a relativistic covariant manner through the exchange of virtual mesons: the isoscalar scalar sigma-meson, the isoscalar vector omega-meson and the isovector vector rho-meson. The model is based on the one boson exchange description of the nucleon- nucleon interaction. ...
Versions of this program held in the CPC repository in Mendeley Data
ADFX_v1_0; spnRHBfem.cc; 10.1016/S0010-4655(97)00042-8
This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019
Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes in Vitro and in Vivo
Colocalization of the genes for the α3(IV) and α4(IV) chains of type IV collagen to chromosome 2 bands q35–q37
Autonomic Nervous System Dysregulation: Breathing and Heart Rate Perturbation During Wakefulness in Young Girls with Rett Syndrome
Genome-wide association meta-analyses of drug-resistant epilepsy
Abstract: Background Epilepsy is one of the most common neurological disorders, affecting over 50 million people worldwide. One-third of people with epilepsy do not respond to currently available anti-seizure medications, constituting one of the most important problems in epilepsy. Little is known about the molecular pathology of drug resistance in epilepsy, in particular, possible underlying genetic factors are largely unknown. Methods We performed a genome-wide association study (GWAS) in two epilepsy cohorts of European ancestry, comparing drug-resistant (N = 4208) to drug-responsive individuals (N = 2618) followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad subtypes: acquired or non-acquired focal and genetic generalized epilepsy. Findings Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy (FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186, P = 1\ub751
7 10 128, OR[C] = 0\ub774). This locus was not associated with any epilepsy subtype in the latest epilepsy GWAS (lowest uncorrected P = 0\ub7009 for FE vs. healthy controls), and drug resistance in FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant SNPs within this locus, encompassing the genes CNIH4, WDR26, and CNIH3, were identified to protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply significantly higher expression levels of CNIH3 and WDR26 in drug-resistant FE than in drug-responsive FE. CNIH3 is implicated in AMPA receptor assembly and function, while WDR26 haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that CNIH3 and WDR26 may play a role in mediating drug response in focal epilepsy. Interpretation We identified a contribution of common genetic variation to drug-resistant focal epilepsy. These findings provide insights into possible mechanisms underlying drug response variability in epilepsy, offering potential targets for personalised treatment approaches
Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes
Abstract: Identifying genetic risk factors for highly heterogeneous disorders such as epilepsy remains challenging. Here we present, to our knowledge, the largest whole-exome sequencing study of epilepsy to date, with more than 54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies and generalized and focal epilepsies, whereas most other gene discoveries are subtype specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single-nucleotide/short insertion and deletion variants, copy number variants and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies
