6,005 research outputs found
Noncontacting device to indicate deflection of turbopump internal rotating parts
Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included
Direct Dark Matter Detection with Velocity Distribution in the Eddington approach
Exotic dark matter together with the vacuum energy (associated with the
cosmological constant) seem to dominate the Universe. Thus its direct detection
is central to particle physics and cosmology. Supersymmetry provides a natural
dark matter candidate, the lightest supersymmetric particle (LSP). One
essential ingredient in obtaining the direct detection rates is the density and
the velocity distribution of the LSP in our vicinity. In the present paper we
study simultaneously density profiles and velocity distributions in the context
of the Eddington approach. In such an approach, unlike the commonly assumed
Maxwell-Boltzmann (M-B) distribution, the upper bound of the velocity arises
naturally from the potential.Comment: 21 LaTex pages, 27 figure
Newtonian and General Relativistic Models of Spherical Shells
A family of spherical shells with varying thickness is derived by using a
simple Newtonian potential-density pair. Then, a particular isotropic form of a
metric in spherical coordinates is used to construct a General Relativistic
version of the Newtonian family of shells. The matter of these relativistic
shells presents equal azimuthal and polar pressures, while the radial pressure
is a constant times the tangential pressure. We also make a first study of
stability of both the Newtonian and relativistic families of shells.Comment: 13 pages, 5 figures, accepted for publication in MNRA
A Field Effect Transitor based on the Mott Transition in a Molecular Layer
Here we propose and analyze the behavior of a FET--like switching device, the
Mott transition field effect transistor, operating on a novel principle, the
Mott metal--insulator transition. The device has FET-like characteristics with
a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is
feasible down to nanoscale dimensions. Implementation with a class of organic
charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study
- …
