34 research outputs found

    A study on L-threonine and L-serine uptake in Escherichia coli K-12

    Get PDF
    In the current study, we report the identification and characterization of the yifK gene product as a novel amino acid carrier in E. coli K-12 cells. Both phenotypic and biochemical analyses showed that YifK acts as a permease specific to L-threonine and, to a lesser extent, L-serine. An assay of the effect of uncouplers and composition of the reaction medium on the transport activity indicates that YifK utilizes a proton motive force to energize substrate uptake. To identify the remaining threonine carriers, we screened a genomic library prepared from the yifK-mutant strain and found that brnQ acts as a multicopy suppressor of the threonine transport defect caused by yifK disruption. Our results indicate that BrnQ is directly involved in threonine uptake as a low-affinity but high-flux transporter, which forms the main entry point when the threonine concentration in the external environment reaches a toxic level. By abolishing YifK and BrnQ activity, we unmasked and quantified the threonine transport activity of the LIV-I branched chain amino acid transport system and demonstrated that LIV-I contributes significantly to total threonine uptake. However, this contribution is likely smaller than that of YifK. We also observed the serine transport activity of LIV-I, which was much lower compared with that of the dedicated SdaC carrier, indicating that LIV-I plays a minor role in the serine uptake. Overall, these findings allow us to propose a comprehensive model of the threonine/serine uptakesubsystem in E. coli cells

    Leukemia Inhibitory Factor in Rat Fetal Lung Development: Expression and Functional Studies

    Get PDF
    Background: Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. Methodology/Principal Findings: LIF and its subunit receptor LIFRa expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRa was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways

    Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation.

    Get PDF
    During gastrulation, cell types from all three germ layers are specified and the basic body plan is established 1 . However, molecular analysis of this key developmental stage has been hampered by limited cell numbers and a paucity of markers. Single-cell RNA sequencing circumvents these problems, but has so far been limited to specific organ systems 2 . Here, we report single-cell transcriptomic characterization of >20,000 cells immediately following gastrulation at E8.25 of mouse development. We identify 20 major cell types, which frequently contain substructure, including three distinct signatures in early foregut cells. Pseudo-space ordering of somitic progenitor cells identifies dynamic waves of transcription and candidate regulators, which are validated by molecular characterization of spatially resolved regions of the embryo. Within the endothelial population, cells that transition from haemogenic endothelial to erythro-myeloid progenitors specifically express Alox5 and its co-factor Alox5ap, which control leukotriene production. Functional assays using mouse embryonic stem cells demonstrate that leukotrienes promote haematopoietic progenitor cell generation. Thus, this comprehensive single-cell map can be exploited to reveal previously unrecognized pathways that contribute to tissue development

    Different populations of progesterone receptor-steroid complexes in binding to specific DNA sequences: effects of salts on kinetics and specificity.

    No full text
    We previously reported evidence for two subpopulations of several classes of steroid receptors that could be distinguished by their requirement of a low molecular weight factor (Mr=700-3000 Da) for binding to nonspecific, calf thymus DNA-cellulose [Cavanaugh, A. H. and Simons Jr., S. S., Journal of Steroid Biochemistry and Molecular Biology, 48, 433-446 (1994)]. This factor appeared to be enriched in (NH4)2SO4 precipitates of nuclear extracts. Using human progesterone receptors (PRs) and biologically active DNA sequences in a modified avidin/biotin-coupled DNA (ABCD) binding assay, we now report a factor-mediated increase in PR binding to specific DNA sites that was indistinguishable from that seen with nonspecific sites. The main advantages of this modified assay are that both kinetic and equilibrium binding of receptor-steroid complexes to DNA can be directly monitored in solution. The ability of either Sephadex G-50 chromatography or sodium arsenite to prevent that binding which is increased by added factor supported the existence of PR subpopulations that are independent of the acceptor DNA sequence. The factor was found, surprisingly, to be low concentrations (> or = 5 mM) of (NH4)2SO4, which anomalously is partially excluded from Sephadex G-10 columns, and can be mimicked by some salts but not sodium arsenite. Kinetic analyses demonstrated that the mechanism of action of salt was to accelerate the rate of binding of PR. Salt also had a much greater effect on the nonspecific binding of PR, such that the ratio of specific to nonspecific DNA binding was greatest at elevated salt concentrations (approximately 75 mM) that afforded submaximal levels of PR binding to specific DNA sites. Further analysis of the DNA-bound receptors revealed that the smaller, A-form of PR is preferentially bound to specific DNA sequences both in the presence and in the absence of various salt concentrations. Thus, the differences in DNA binding of PR +/- salt do not correlate with the preferential binding of A or B isoform. The unequal behavior of PR subpopulations and/or isoforms for binding to specific DNA sequences offers added mechanisms for selective transcriptional regulation of genes in intact cells

    A study on L-threonine and L-serine uptake in Escherichia coli K-12

    No full text
    In the current study, we report the identification and characterization of the yifK gene product as a novel amino acid carrier in E. coli K-12 cells. Both phenotypic and biochemical analyses showed that YifK acts as a permease specific to L-threonine and, to a lesser extent, L-serine. An assay of the effect of uncouplers and composition of the reaction medium on the transport activity indicates that YifK utilizes a proton motive force to energize substrate uptake. To identify the remaining threonine carriers, we screened a genomic library prepared from the yifK-mutant strain and found that brnQ acts as a multicopy suppressor of the threonine transport defect caused by yifK disruption. Our results indicate that BrnQ is directly involved in threonine uptake as a low-affinity but high-flux transporter, which forms the main entry point when the threonine concentration in the external environment reaches a toxic level. By abolishing YifK and BrnQ activity, we unmasked and quantified the threonine transport activity of the LIV-I branched chain amino acid transport system and demonstrated that LIV-I contributes significantly to total threonine uptake. However, this contribution is likely smaller than that of YifK. We also observed the serine transport activity of LIV-I, which was much lower compared with that of the dedicated SdaC carrier, indicating that LIV-I plays a minor role in the serine uptake. Overall, these findings allow us to propose a comprehensive model of the threonine/serine uptake subsystem in E. coli cells
    corecore