354 research outputs found

    Monte Carlo study of the growth of L12L1_2 ordered domains in fcc A3BA_3B binary alloys

    Get PDF
    A Monte Carlo study of the late time growth of L12L1_2 ordered domains on a fcc A3BA_3B binary alloy is presented. The energy of the alloy has been modeled by a nearest neighbor interaction Ising hamiltonian. The system exhibits a fourfold degenerated ground-state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancy-atom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3AuCu_3Au and theories for anisotropic growth

    Materials with Giant Mechanocaloric Effects: Cooling by Strength

    Full text link
    The search for materials with large caloric effects has become a major challenge in material science due to their potential in developing near room-temperature solid-state cooling devices, which are both efficient and clean, and that can successfully replace present refrigeration technologies. There are three main families of caloric materials: magnetocaloric, electrocaloric, and mechanocaloric. While magnetocaloric and electrocaloric materials have been studied intensively in the last few decades, mechanocaloric materials are only very recently receiving a great deal of attention. The mechanocaloric effect refers to the reversible thermal response of a solid when subjected to an external mechanical field, and encompasses both the elastocaloric effect, corresponding to a uniaxial force, and the barocaloric effect, which corresponds to the response to hydrostatic pressure. Here, the state of the art in giant mechanocaloric effects is reviewed and a critical analysis of the thermodynamic quantities that characterize the major families of barocaloric and elastocaloric materials is provided. Finally perspectives for further development in this area are given

    Study of thermoelastic growth during martensitic transformations

    Get PDF
    The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system

    Cooling and heating by adiabatic magnetization in the Ni50_{50}Mn34_{34}In16_{16} magnetic shape memory alloy

    Get PDF
    We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50_{50}Mn34_{34}In16_{16} alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.Comment: 5 pages, 4 figures. Accepted for publication in the Physical Review

    Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn

    Get PDF
    At certain compositions Ni-Mn-XX Heusler alloys (XX: group IIIA-VA elements) undergo martensitic transformations, and many of them exhibit inverse magnetocaloric effects. In alloys where XX is Sn, the isothermal entropy change is largest among the Heusler alloys, particularly in Ni50_{50}Mn37_{37}Sn13_{13} where it reaches a value of 20 Jkg−1^{-1}K−1^{-1} for a field of 5T. We substitute Ni with Fe and Co in this alloy, each in amounts of 1 at% and 3 at% to perturb the electronic concentration and examine the resulting changes in the magnetocaloric properties. Increasing both Fe and Co concentrations causes the martensitic transition temperature to decrease, whereby the substitution by Co at both compositions or substituting 1 at% Fe leads to a decrease in the magnetocaloric effect. On the other hand, the magnetocaloric effect in the alloy with 3 at% Fe leads to an increase in the value of the entropy change to about 30 Jkg−1^{-1}K−1^{-1} at 5T.Comment: 5 pages, 7 figures. Accepted for publication in the Journal of Applied Physic
    • …
    corecore