4 research outputs found

    Evaluation of global composite collection reveals agronomically superior germplasm accessions for chickpea improvement

    Get PDF
    The rich genetic diversity existing within exotic, indigenous, and diverse germplasm lays the foundation for the continuous improvement of crop cultivars. The composite collection has been suggested as a gateway to identifying superior germplasm for use in crop improvement programs. Here, a chickpea global composite collection was evaluated at five locations in India over two years for five agronomic traits to identify agronomically superior accessions. The desi, kabuli, and intermediate types of chickpea accessions differed significantly for plant height (PLHT) and 100-seed weight (100 SW). In contrast, the intermediate type differed substantially from kabuli for days to maturity (DM). Several highly significant trait correlations were detected across different locations. The most stable and promising accessions from each of the five locations were prioritised based on their superior performance over the best-performing check cultivar. Accordingly, the selected germplasm accessions of desi type showed up to 176% higher seed yield (SY), 29% lower flowering time, 21% fewer maturity days, 64% increase in PLHT, and 183% larger seeds than the check cultivar JG11 or Annigeri. The prioritised kabuli accessions displayed up to 270% more yield, 13% less flowering time, 8% fewer maturity days, 111% increase in PLHT, and 41% larger seeds over the check cultivar KAK2. While the intermediate type accessions had up to 169% better yield, 1% early flowering, 3% early maturity, 54% taller plants, and 25% bigger seeds over the check cultivar JG 11 or KAK2. These accessions can be utilised in chickpea improvement programs to develop high-yielding, early flowering, short duration, taller, and large-seeded varieties with a broad genetic base

    Development of High Yielding Fusarium Wilt Resistant Cultivar by Pyramiding of “Genes” Through Marker-Assisted Backcrossing in Chickpea (Cicer arietinum L.)

    Get PDF
    Pusa 391, a mega desi chickpea variety with medium maturity duration is extensively cultivated in the Central Zone of India. Of late, this variety has become susceptible to Fusarium wilt (FW), which has drastic impact on its yield. Presence of variability in the wilt causing pathogen, Fusarium oxysporum f.sp. ciceri (foc) across geographical locations necessitates the role of pyramiding for FW resistance for different races (foc 1,2,3,4 and 5). Subsequently, the introgression lines developed in Pusa 391 genetic background were subjected to foreground selection using three SSR markers (GA16, TA 27 and TA 96) while 48 SSR markers uniformly distributed on all chromosomes, were used for background selection to observe the recovery of recurrent parent genome (RPG). BC1F1 lines with 75–85% RPG recovery were used to generate BC2F1. The plants that showed more than 90% RPG recovery in BC2F1 were used for generating BC3F1. The plants that showed more than 96% RPG recovery were selected and selfed to generate BC3F3. Multi-location evaluation of advanced introgression lines (BC2F3) in six locations for grain yield (kg/ha), days to fifty percent flowering, days to maturity, 100 seed weight and disease incidence was done. In case of disease incidence, the genotype IL1 (BGM 20211) was highly resistant to FW in Junagarh, Indore, New Delhi, Badnapur and moderately resistant at Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM20211) was the most stable genotype at Junagadh, Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM 20211) and IL4(BGM 20212) were the top performers in yield and highly stable across six environments and were nominated for Advanced Varietal Trials (AVT) of AICRP (All India Coordinated Research Project on Chickpea) in 2018–19. BGM20211 and BGM 20212 recorded 29 and 28.5% average yield gain over the recurrent parent Pusa 391, in the AVT-1 and AVT-2 over five environments. Thus, BGM20211 was identified for release and notified as Pusa Manav/Pusa Chickpea 20211 for Madhya Pradesh, Gujarat and Maharashtra, Southern Rajasthan, Bundhelkhand region of Uttar Pradesh states by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India (Gazette notification number S.O.500 (E) dt. 29-1-2021).Such pyramided lines give resilience to multiple races of fusarium wilt with added yield advantage

    A chickpea genetic variation map based on the sequencing of 3,366 genomes

    Get PDF
    Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively
    corecore