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Zero hunger and good health could be realized by 2030 through effective 
conservation, characterization and utilization of germplasm resources1. So far, few 
chickpea (Cicer arietinum) germplasm accessions have been characterized at the 
genome sequence level2. Here we present a detailed map of variation in 3,171 
cultivated and 195 wild accessions to provide publicly available resources for chickpea 
genomics research and breeding. We constructed a chickpea pan-genome to describe 
genomic diversity across cultivated chickpea and its wild progenitor accessions. A 
divergence tree using genes present in around 80% of individuals in one species 
allowed us to estimate the divergence of Cicer over the last 21 million years. Our 
analysis found chromosomal segments and genes that show signatures of selection 
during domestication, migration and improvement. The chromosomal locations of 
deleterious mutations responsible for limited genetic diversity and decreased fitness 
were identified in elite germplasm. We identified superior haplotypes for 
improvement-related traits in landraces that can be introgressed into elite breeding 
lines through haplotype-based breeding, and found targets for purging deleterious 
alleles through genomics-assisted breeding and/or gene editing. Finally, we propose 
three crop breeding strategies based on genomic prediction to enhance crop 
productivity for 16 traits while avoiding the erosion of genetic diversity through 
optimal contribution selection (OCS)-based pre-breeding. The predicted 
performance for 100-seed weight, an important yield-related trait, increased by up to 
23% and 12% with OCS- and haplotype-based genomic approaches, respectively.

Pulses are an important crop commodity providing protein for human 
health. Worldwide pulse productivity has been stagnant for the last 
five decades, contributing to low per-capita availability of these foods 
and high levels of malnutrition in developing countries3. Chickpea 
(Cicer arietinum L.) production ranks third among pulses, and chickpea 
is cultivated in more than 50 countries, especially in South Asia and 
sub-Saharan Africa. As it is an important source of protein, dietary 
fibre and micronutrients, chickpea is key to nutritional security. More 
than 80,000 chickpea germplasm accessions are being conserved in 
30 genebanks across the world4, but only a few have been used for 
chickpea improvement2.

Germplasm sequencing efforts in some crop plants have provided 
insights into the global distribution of genetic variation5; how this 
diversity has been shaped by the genetic bottlenecks associated with 
domestication6 and by the effects of selective breeding7; and, finally, 
how we can link this genetic variation to phenotypic diversity2 for breed-
ing applications. Haplotype maps developed using whole-genome 
sequencing (WGS) data have helped to determine the percentage of 
the constrained genome and detect deleterious mutations that can 
be purged for accelerated breeding8,9. Furthermore, sequencing and 
genotyping of a germplasm collection allows better conservation and 
management in genebanks5,10.
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On the basis of WGS of 3,366 chickpea germplasm accessions, we 

report here a rich map of the genetic variation in chickpea. We provide 
a chickpea pan-genome and offer insights into species divergence, the 
migration of the cultigen (C. arietinum), rare allele burden and fitness 
loss in chickpea. We propose three genomic breeding approaches—
haplotype-based breeding, genomic prediction and OCS—for devel-
oping tailor-made high-yielding and climate-resilient chickpea  
varieties.

We sequenced 3,366 chickpea germplasm lines, including 3,171 cul-
tivated and 195 wild accessions at an average coverage of around 12× 
(Methods, Extended Data Fig. 1, Supplementary Data 1 Tables 1, 2). Align-
ment of WGS data to the CDC Frontier reference genome11 identified 
3.94 million and 19.57 million single-nucleotide polymorphisms (SNPs) 
in 3,171 cultivated and 195 wild accessions, respectively (Extended Data 
Table 1, Supplementary Data 1 Tables 3–7, Supplementary Notes). This 
SNP dataset was used to assess linkage disequilibrium (LD) decay (Sup-
plementary Data 2 Tables 1, 2, Extended Data Fig. 2, Supplementary 
Notes) and identify private and population-enriched SNPs (Supple-
mentary Data 3 Tables 1–4, Supplementary Notes). These private and 
population-enriched SNPs suggest rapid adaptation and can enhance 
the genetic foundation in the elite gene pool.

Pan-genome
We developed a chickpea pan-genome (592.58 Mb) using an iterative 
mapping and assembly approach by combining the CDC Frontier 
reference genome, an additional 2.93 Mb from a desi genome (ICC 
4958)12, 3.70 Mb from a Cicer reticulatum genome13 and 53.66 Mb from 
de-novo-assembled sequences from cultivated (48.38 Mb; 3,171) and  
C. reticulatum (5.28 Mb; 28) accessions (Supplementary Data 4 Table 1).  
Although similar pan-genome studies have been conducted in 
other crops, including rice5,14, soybean15 and Brassica oleracea16, our 
pan-genome comprises more than 3,000 individuals.

A total of 29,870 genes (1,601 additional gene models) were identi-
fied, of which 1,582 were to our knowledge novel compared to previ-
ously reported genes11. Gene ontology (GO) annotations identified 
genes that encode response to oxidative stress, response to stimulus, 
heat shock protein, cellular response to acidic pH and response to 
cold (Supplementary Data 4 Tables 2, 3), suggesting a possible role in 
adaptation. The modelling analysis curve eventually reaching satura-
tion suggested that the pan-genome is closed, in concurrence with 
other plant pan-genomes14,16 (Fig. 1a). N50, a widely used metric to 
assess the quality of an assembly, is the length of the shortest contig 
for which larger and equal size contigs cover 50% of the total assem-
bly. The N50 values for sequences from de-novo-assembled cultivated 
and C. reticulatum accessions, C. reticulatum and the desi genome were 
2.61 kb, 1.30 kb, 1.78 kb and 1.76 kb, respectively, whereas the average 
gene length was 4.72 kb, 1.09 kb, 1.09 kb and 0.98 kb (Supplementary 
Data 4 Table 1). This pan-genome was further used to assess the effect of 
presence–absence variations on protein-coding genes (Supplementary 
Data 4 Table 4, Supplementary Notes).

Cultivated (2,258) and C. reticulatum (22) accessions with a coverage 
of greater than 10× were analysed to discover structural variations, 
including insertions (139,483), deletions (47,882), inversions (61,171), 
intra-chromosomal translocations (417) and inter-chromosomal trans-
locations (2,410) in cultivated and 287,854 insertions, 67,351 deletions, 
58,070 inversions, 446 intra-chromosomal translocations and 2,066 
inter-chromosomal translocations among C. reticulatum accessions as 
compared to the CDC Frontier genome11 (Fig. 1b, Extended Data Table 1, 
Supplementary Data 5 Table 1, Supplementary Notes). More structural 
variations in the C. reticulatum accessions were expected because of 
their high divergence from cultivated chickpea. We further identified 
793 gene-gain copy number variants (CNVs) and 209 gene-loss CNVs in 
cultivated accessions, and 643 gene-gain and 247 gene-loss CNVs in  
C. reticulatum accessions (Supplementary Data 5 Tables 2, 3).

Species divergence and migration
To understand speciation and estimate species divergence time in 
the eight Cicer species analysed here, single-copy genes identified  
using ‘fabales’ genes from the BUSCO17 database were used to carry 
out homologue-based gene annotation in preliminary genome 
assemblies, the CDC Frontier11 and Medicago truncatula18. Using these 
single-copy genes, Cicer cuneatum was estimated to have diverged 
from other Cicer species around 21.4 (19.6–22.8) million years ago 
(Ma) (Extended Data Fig. 3a, Supplementary Notes), about the time 
that Arabia collided with Asia, and a time when ‘Rand Flora’ taxa like 
Cicer may have migrated from Africa into Southwest Asian habitats19. 
C. reticulatum and Cicer echinospermum were estimated to have 
diverged around 15.3 (14.0 to 16.2) Ma, which is higher than previous 
estimates and might be influenced by: (i) wild accessions conserved at 
the International Crops Research Institute for the Semi-Arid Tropics 
(ICRISAT) representing only some populations of these species, when 
recent work has shown that only some C. echinospermum populations 
are cross-compatible with C. arietinum; and (ii) introgression from 
C. echinospermum into cultivated chickpea, which is widespread in 
Australian and North American breeding lines, and is also likely to 
have occurred in International Center for Agricultural Research in 
the Dry Areas (ICARDA) lines.

Phylogenetic analysis grouped all 195 wild accessions into 6 clusters 
(Clusters I–VI) (Extended Data Fig. 3b, Supplementary Notes). Cluster 
IVa included all C. reticulatum and one C. echinospermum (ICC 20192; 
green colour), whereas cluster IVb included all C. echinospermum 
and one C. reticulatum (ICC 73071; golden-yellow colour). Similarly, 
one Cicer pinnatifidum (ICC 20168; red colour) was grouped with the 
Cicer bijugum accessions in cluster II, and one C. bijugum (ICC 20167; 
blue colour) was grouped with C. pinnatifidum accessions in cluster 
I. These are two cross-compatible species. Spontaneous hybridiza-
tion might have occurred in nature. In terms of post-species diver-
gence, a homologue (Ca_25684) of SHATTERPROOF2 (also known as 
Agamous-like MADS-box protein (AGL5)), which is responsible for 
seed dispersal, was analysed for haplotypic variation (Supplementary 
Notes). We found an association of the ‘C’ allele with low or minimal 
shattering in cultivated species, as seen at the low shattering allele (‘C’) 
on chromosome 5 at position 1,022,962 of the orthologue in common  
bean20.

The neighbour-joining tree grouped most South Asian accessions 
with no distinct clustering for other geographic origins (Extended 
Data Fig. 4). Our principal component analysis (PCA) of accessions 
suggests two paths of diffusion or migration of chickpea from the 
centre of origin in the Fertile Crescent: one path indicates diffusion 
to South Asia and East Africa, and the other suggests diffusion to the 
Mediterranean region (probably through Turkey) as well as to the 
Black Sea and Central Asia (up to Afghanistan) (Fig. 2a–f, Extended 
Data Fig. 5). This diffusion translated into a pattern of nucleotide 
diversity (π), among accessions from Central Asia (4.74 × 10−4) and 
South Asia (3.62 × 10−4) (Supplementary Data 6 Table 1), which is con-
sistent with earlier reports2. Pairwise fixation index (FST) estimations 
further supported these findings (Supplementary Data 6 Table 2, 
Supplementary Notes).

Domestication and breeding bottlenecks
Our analysis indicates that chickpea experienced a strong bottleneck 
beginning around 10,000 years ago. The population size reaching its 
minimum around 1,000 years ago, followed by a very strong expan-
sion of the population within the last 400 years (Extended Data Fig. 6), 
suggest a strong recent expansion of chickpea agriculture. One con-
sequence of this bottleneck is shown by the higher π in C. reticulatum 
(2.20 × 10–3) relative to cultivated accessions (Extended Data Table 1, 
Supplementary Data 6 Table 1).
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Genetic relationship analysis between cultivated and wild chickpea 
showed that one cultivated accession (ICC 16369) from East Africa was 
grouped with wild chickpea (Extended Data Fig. 7). This same genotype 
also showed the presence of the ‘T’ allele, specific to wild species in 
SHATTERPROOF2, suggesting that ICC 16369 has been mislabelled as 
belonging to the cultivated chickpea (Supplementary Data 7).

To detect selection sweeps, we pinpointed 18 fragments in culti-
vated chickpea using the composite likelihood ratio (CLR) (Extended 
Data Fig. 6, Supplementary Data 6 Tables 8, 9). Combined analysis with 
reduction of diversity (ROD), FST and Tajima’s D identified genomic 
regions for C. reticulatum (immediate wild species progenitor) ver-
sus landraces (2,899; 42,148 kb), landraces versus breeding lines (191; 
4,360 kb) and breeding lines versus cultivars (14; 404 kb) that might 
have undergone selection during domestication and breeding (Sup-
plementary Data 6 Tables 3–6, Supplementary Notes, https://doi.
org/10.6084/m9.figshare.15015327). We identified 35 regions (222 kb) 
common between C. reticulatum versus landraces and landraces ver-
sus breeding lines, and similarly one region (4 kb) between landraces 
versus breeding lines and breeding lines versus cultivars. Furthermore, 
we identified a total of 37 unique potential genes in these 36 regions 
that may have a role in the adaptation of chickpea during migration to 
different environments by regulating flowering time and plant growth 
(Supplementary Data 6 Table 7). For example, FLP2 (flower develop-
ment and vegetative to reproductive phase transition of meristem), 
LRP1 (root growth), PIP5KL1 (signalling pathways for survival and T cell 
metabolism) and MYB12 (flavonoid biosynthesis) are some key genes 
we pinpointed that are critical for plant growth, metabolic pathways 
and adaptation in changing environments.

We used genomic evolutionary rate profiling (GERP) analysis to 
identify 29 Mb (8.36%) genomic regions as evolutionarily constrained 
(GERP score of greater than 0), indicating purifying selection (Extended 
Data Fig. 8a). Using constrained genome, sorting intolerant from tol-
erant21 (SIFT) score (less than 0.05) and GERP (greater than 2), 10,616 

non-synonymous SNPs were identified as candidate deleterious muta-
tions (Extended Data Fig. 8b). Using the derived allele frequency (DAF) 
spectrum, we selected 37 non-synonymous deleterious mutations 
(SIFT < 0.05; GERP > 2; DAF > 0.8) in 36 genes (Supplementary Data 8 
Tables 1–4), as fixed that have not been purged through traditional 
breeding. Detailed analysis indicated a higher (17.88%, P = 0.01772) 
abundance of deleterious alleles in the wild progenitor (C. reticulatum) 
than in cultivated accessions (Extended Data Fig. 8c). Furthermore, the 
mutation burden for genomic regions under selection suggested that 
the number of deleterious mutations in landraces was approximately 
twofold that in breeding lines (206.91%; P = 2.195676 × 10−60) (Extended 
Data Fig. 8d). To increase the fitness of cultivated chickpea, these del-
eterious alleles are potential targets for genomics-assisted breeding 
and genome editing.

 
Superior haplotypes for key traits
We used 3.94 million SNPs and phenotyping data for 16 traits on 2,980 
cultivated genotypes to identify 205 SNPs associated with 11 traits (Meth-
ods, Supplementary Data 9 Table 1, Supplementary Notes). Of the 205 
associated SNPs, 152 were present in 79 unique genes with potential 
roles in controlling seed size and development. Analysis of these genes 
across cultivated genotypes identified 350 haplotypes (Supplementary 
Data 9 Tables 2–4, Supplementary Notes). Using 19.10 million haplo–
pheno combinations, we identified 24 consistent and stable superior 
haplotypes for 20 genes (Supplementary Data 9 Tables 5–7, Extended 
Data Fig. 9a). This analysis revealed that the majority of breeding lines 
(80%) lacked superior haplotypes that are present in the landraces. We 
validated superior haplotypes by using historical data on 129 chickpea  
varieties released between 1948 and 2012 (Extended Data Fig. 9b, c). 
Finally, we identified 56 lines as potential donors for introducing superior  
haplotypes in breeding (Supplementary Data 9 Tables 8–10).
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Enriching the genetic base
We combined OCS22 with a mate allocation method that takes into 
account genetic gain and genetic diversity as a guide for potential 
future chickpea pre-breeding programmes or ‘evolving gene banks’22,23 
(Supplementary Notes). With a price bonus for earliness and for large 
seeds, we chose 274 (9.4%) unique genotypes for 325 matings from 
the 2,898 available genotypes, divided among desi (190), kabuli 
(120) and intermediate (15), using MateSel24 (Supplementary Data 10  
Table 1).

The frequency distribution of predicted progeny index (mean of nine 
environments) values was bimodal. Higher predicted progeny index 
values were observed in kabuli as compared with desi. However, marked 
improvements were predicted in desi and kabuli, from candidate parents  
to predicted progenies (Extended Data Fig. 10a, b). The frequency 
distribution of predicted progeny genomic estimated breeding value 
(GEBV) for yield per plant (YPP) in desi (13.79 g) exceeded kabuli 
(12.65 g) and a higher response to selection was observed for desi 
(0.6 g; 4.3%) than for kabuli (0.4 g; 3.5%) (Extended Data Fig. 10c, d). 
For 100-seed weight (100SW), the mean 100SW of predicted progeny in 
kabuli (30.6 g) was almost twice that of desi (16.9 g), and the response 
to selection was three times higher for kabuli (5.7 g; 23%) than for desi 
(2.0 g; 13%) (Fig. 3a, Extended Data Fig. 10e, f). Kabuli progeny, with a 
later flowering time, did not respond to selection for earliness (−1.0 day)  
as rapidly as desi progeny (−3.3 days) (Extended Data Fig. 10g, h). These 
predicted responses to selection in the next cycle occurred with a 
relatively small increase in predicted progeny inbreeding in the desi 
(0.03) and intermediate (0.02), but a large increase in the kabuli (0.17) 
(Extended Data Fig. 10i, Supplementary Data 10 Table 2, Supplementary  
Notes).

Breeding population improvement
We used different subsets of SNPs and phenotyping data on 16 
traits across 12 combinations of year and location, following 3 genomic 
prediction approaches: (i) interaction of marker and environment 
covariates (G × E)25; (ii) implementation of the WhoGEM approach26; 
and (iii) a haplotype-based approach for estimating local GEBVs27.

In the first approach, 3 genomic relationship matrices with 223,119 
(G1), 531,457 (G2) and 754,576 (G3) SNPs, and phenotyping data for 
9 traits on 2,980 genotypes, were used to understand the variability 
explained within the groups and environments (Supplementary Data 10 
Table 3). Overall, the environment (E) + genotype (L) + marker effects 
(G3) model for cross-validation scheme 0 (CV0; see ‘Prediction using 
the interaction of genomic and environmental covariates’ in Meth-
ods) produced the highest average correlation (0.719) for 100SW, and 
the E + L model returned the lowest value (0.031) for basal secondary 
branch (Supplementary Data 10 Table 4). For 100SW, genomic predic-
tion accuracy varied from 0.611 (E + L + G3 + G3E) to 0.719 (E + L + G3) 
for CV1 and CV0, respectively (Fig. 3b).

In the second approach, we used WhoGEM with 276,956 LD-pruned 
SNPs and phenotyping data for 9 traits on 1,318 genotypes (with GPS 
data). Prediction accuracies of the full model ranged from 0.25 to 0.91 
(Supplementary Data 10 Table 5). Although the highest prediction accu-
racy was obtained for plot yield (0.914), this method was still efficient 
in predicting 100SW, with an accuracy of 0.599 (environment-only 
model) to 0.707 (WhoGEM full model) (Fig. 3c). Evidence for interactions 
between admixture components and the environment was presented 
for phenology, plant production and plant architecture traits (Extended 
Data Fig. 11a–m). The use of admixture components integrates the effects 
of demography (that is, gene flow and genetic drift) and artificial or 
natural selection to explain phenotypic variation with reasonable accu-
racy. This shows considerable potential to detect the accumulation of 
favourable admixture components from the wider genepool.

In the third approach, 124,833 selected SNPs were used to construct 
LD blocks, called haplotypes. These SNPs and phenotyping data for 
100SW and YPP for 2,980 genotypes were used to estimate local GEBVs 
for the haplotypes. The local GEBV analysis revealed substantial genetic 
potential in each subgroup for trait improvement (Extended Data 
Fig. 12). When comparing the best accessions with the highest GEBVs 
to the in silico genotypes that combined all haplotypes with the high-
est trait effect across the whole genome, the predicted performance 
increased by more than threefold for YPP and by more than fivefold 
for 100SW (Fig. 3d). Our results indicate that capturing novel alleles 
from landraces through a haplotype-based prediction approach could 
improve YPP or 100SW by 6–12% (Fig. 3d).
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Discussion
Our study reports global polymorphisms in chickpea by sequencing 
3,366 germplasm accessions (3,171 cultivated and 195 wild). This analy-
sis brings greater resolution to our understanding of the within-species 
diversity of C. arietinum. The chickpea pan-genome (592.58 Mb) devel-
oped from cultivated draft genomes11,12 and the C. reticulatum genome13, 
together with WGS data on cultivated and C. reticulatum accessions, 
provided insights into gene content variation across cultivated chick-
pea and its wild progenitor.

Although some studies based on chloroplast DNA28 and nuclear 
ribosomal DNA29 have been conducted to investigate the evolution 
and domestication of Cicer species in the past, their resolution was 
limited. Here, by using WGS data for a large number of individuals, 
we estimated the divergence time between chickpea and its closest 
progenitor species. Our study also provides opportunities to rectify 
misclassifications of accessions to the correct species and to determine 
whether chickpea seeds preserved in archaeological sites were wild 
or cultivated.

We identified selective sweeps and candidate genes under domestica-
tion and breeding that were responsible for reducing genetic diversity in 
the cultivated genepool. Most importantly, our study analysed genetic 
loads in Cicer species. Although selection and recombination have 
successfully purged many deleterious alleles, the current collection 
of breeding lines and cultivars still contains substantial genetic loads 
that affect crop fitness. Here, we have identified deleterious alleles 
for purging through genome-informed breeding and/or gene editing.

We identified numerous superior haplotypes for improvement- 
related traits in landraces, and used the concept of superior haplotypes 
by comparing the yield of the released varieties carrying superior versus 

regular haplotypes for yield-related traits30. Furthermore, we esti-
mated prediction accuracies for agronomic traits using three genomic 
prediction approaches and provided a case study for 100SW, demon-
strating that genomic prediction approaches have great potential for 
enhancing crop productivity. We suggest using haplotype mining and 
genomic prediction approaches in chickpea and other crops to provide 
climate resilience and improved nutrition to meet future worldwide  
demand.
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Fig. 3 | An example of the use of four genomic breeding strategies for 
improving 100SW. a, Mean GEBV and total genetic values predict a 23% 
increase in one generation for 100SW in kabuli candidates. b, Genomic-enabled 
predictions using Bayesian generalized linear regression (BGLR) on three cross- 
validation schemes provided the highest mean prediction accuracy with 
scheme CV0 (n = 2,980 cultivated accessions). c, A general linear model using 
the WhoGEM prediction machine provided the highest prediction accuracies 
for the WhoGEM full model (n = 1,500; 300 replicates of a fivefold 

cross-validation). In each violin plot, the black dot represents the mean. GxE, 
genotype and environment interaction. d, Haplotype-based local GEBVs that 
are suggested to provide a fivefold improvement in performance over the best 
accessions with the highest GEBV. The genotypes were classified into three 
different groups (cultivars (CV, n = 152), breeding lines (BL, n = 396) and 
landraces (LR, n = 2,439)). Each of the box plots shows the upper and lower 
whisker (indicated by dashed lines), the 25% and 75% quartiles and the median 
(as a solid line).
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Methods

Germplasm sequencing and variant calling
We performed WGS of 2,967 Cicer accessions from a global composite 
collection4 using the HiSeq2500 at the Center of Excellence in Genomics 
and Systems Biology, ICRISAT. By including sequence data of 399 lines 
from an earlier study2, we analysed 3,366 accessions (3,171 cultivated 
and 195 wild species accessions) altogether (Supplementary Notes).

We aligned sequencing data from the 3,366 chickpea accessions to 
the reference genome of CDC Frontier11, using BWA-MEM31 v.0.7.15. SNP 
calling was performed using GATK32 v.3.7 as per GATK best practices for 
SNP calling, thus creating the base SNP set. We defined two other SNP 
sets: (i) Set-A: only SNPs with <30% missing call, and biallelic calls, and  
(ii) Set-B: SNPs with less than 30% missing calls, biallelic calls, and LD-pruned 
using PLINK33 v.1.90 (“--indep-pairphase 50 10 0.2” parameter). Set- 
B SNPs were only used to depict the population genetic structure.

Private and population-enriched SNPs
To determine the private and population-specific SNPs, the frequency 
of alleles within a given population was determined using VariantsTo-
Table34 of GATK v3.8.1. We defined ‘private alleles’ as those present in 
at least four accessions within a population and absent in other popu-
lations, and ‘population-enriched alleles’ as those present in a given 
population (≥20%) and less frequent in other populations5 (≤2%).

LD decay, diversity and FST

LD decay was determined using the software PopLDdecay35 v.3.29 with 
the parameter “-MaxDist 1000”. Nucleotide diversity (π) was calcu-
lated from a 100-kb sliding window with a 10-kb step using VCFtools36 
v.0.1.13. The average of all valid windows was considered the population 
genetic diversity. The fixation index (FST) was calculated from 100-kb 
non-overlapping windows using VCFtools. The global weighted FST was 
used to measure the differentiation of populations.

Construction of a pan-genome
The chickpea draft genome of CDC Frontier11 (a kabuli variety; con-
sidered as the foundation genome) together with ICC 495812,37 (a desi 
genome sequence), a C. reticulatum genome13, and de-novo-assembled 
sequences from 3,171 cultivated and 28 C. reticulatum accessions 
were used to guide the assembly of the chickpea pan-genome using 
a conservative approach38. Following the alignment of reads from 
each accession to the reference, unmapped and dangling mapped 
read pairs were extracted using SAMTools39 v.1.2 based on the FLAG 
field. The extracted reads were de-novo-assembled using MEGAHIT40 
v.1.2.9 with default parameters. To identify possible redundancies 
among assembled contigs that were already present in the foundation 
genome, the assembled contigs were aligned to the foundation genome 
using NUCmer41 v.4.0.0beta2 with the parameters “-l 20 -c 65” and the 
alignments with length ≥ 500 bp and identity of greater than 80% were 
extracted to be added into the intermediate pan-genome. The processes 
were performed one by one: ICC 4958, de-novo-assembled sequences 
from 3,171 cultivated accessions, the C. reticulatum genome, and 
de-novo-assembled sequences from 28 C. reticulatum accessions. Fur-
ther, to identify redundancy among the ‘novel’ sequences, all-versus-all 
alignment was performed using CD-HIT42 v.4.81. The same process was 
performed for the next iteration until no sequence was left. Finally, we 
removed the potential containments from vectors, bacteria, viruses, 
animals, fungi and organelle sequences using BLASTN43 v.2.2.31 to the 
corresponding NT databases and obtained the final pan-genome. As 
a result, the CDC Frontier genome11 and novel assembled sequences 
were combined to construct the chickpea pan-genome.

Structural and copy number variations
A total of 2,258 cultivated and 22 C. reticulatum accessions (with sequence 
depth of greater than 10×) were used to identify structural variations 

against the reference genome of CDC Frontier11, such as large insertions, 
deletions, inversions, and intra- and inter-chromosomal translocations. 
The insertions, deletions and inversions were identified using a dual call-
ing strategy through BreakDancer44 v.1.1.2 and Pindel45 v.0.2.5b9. First, 
BreakDancer was used to detect structural variations with parameter  
“-q 20 -y 20 -r 1”. Secondly, the output of BreakDancer was used as an 
input for Pindel using the parameter “-x 4 -breakdancer” to increase the 
sensitivity and specificity. To merge the results from BreakDancer and 
Pindel, two structural variants with a distance between the two break-
points of less than 100 bp were considered the same structural varia-
tion and merged. Owing to the inability of Pindel to detect intra- and 
inter-chromosomal translocations, only BreakDancer was used for their 
analysis. Furthermore, a structural variation was considered if it was 
present in at least 5% of the individuals in a given population.

For CNVs, we first generated a GC-content profile using gccount 
(http://bioinfo-out.curie.fr/projects/freec/src/gccount.tar.gz) with 
parameter “window = 1000 step = 1000” to normalize non-uniform read 
coverage of genomic position. Then, Control-FREEC46 v.11.0 was used 
to detect CNVs in 1-kb non-overlapping windows (bins) with parameter 
“ploidy = 2 window = 1000 step = 1000 mateOrientation=FR” for each 
high-depth individual (sequencing depth > 10X). Next, the sample-level 
copy numbers were combined to produce a matrix of copy numbers 
for each bin at the cohort level. To further reduce false positives, we 
filtered out the bins with a CNV rate of less than 1%. The affected genes 
were identified by the presence of overlapping regions with CNVs.

Divergence and phylogenetic relationship
For divergence time estimation, 195 wild species accessions were assem-
bled individually using MEGAHIT40 v.1.2.9 with default parameters. 
Then, the ‘fabales’ genes were downloaded from the BUSCO17 database 
(odb10), which contains 5,366 single-copy orthologues to predict the 
genes for 195 wild species accessions, CDC Frontier genome11 and M. 
truncatula genome18 (as outgroup) using GeneWise47 v.2.4.1 with the 
parameters “-both -sum -genesf”. On the basis of the gene annotations 
of 195 wild species accessions, only one sample with the longest average  
coding sequence (CDS) length was chosen for each wild species. The 
CDS sequences of single-copy genes in seven wild species, CDC Frontier 
and M. truncatula were extracted. For each single-copy family, multiple 
sequence alignment was performed using MUSCLE48 v.3.8.31 with default 
parameters and poorly aligned and divergent regions were eliminated 
using Gblocks49 v.0.91b with the parameter “-t=c”. The aligned matrix 
from each single-copy family was combined to construct the super 
aligned matrix. The maximum likelihood tree was constructed using 
RAxML50 v.8.2.12 with parameters “-f a -x 12345 -p 12345 -# 1000 -m GTR-
CATX”. Finally, divergence time was estimated by MCMCTree51 v.4.4 
with three time-calibration points (0.007–0.013 Ma for C. reticulatum– 
C. arietinum, 12.2–17.4 Ma for C. arietinum–C. pinnatifidum, and 
30.0–54.0 Ma for C. arietinum–M. truncatula) from the literature52–54.

To assess the relatedness among 195 wild accessions and 3,171 culti-
vated lines, the genetic distance matrix based on identity by state (IBS) 
was calculated through PLINK v1.90 with the parameter “--distance 1-ibs” 
using LD-pruned SNPs (--indep-pairwise 50 10 0.2) present on pseu-
domolecules. On the basis of the distance matrix, neighbour-joining phy-
logenetic trees were then constructed using ‘neighbor’ in PHYLIP55 v.3.6.

A PCA was undertaken to study the relatedness and clustering among 
cultivated chickpea accessions. The top 20 principal components (PCs) 
of the variance-standardized relationship matrix were estimated using 
EIGENSOFT56 v.7.2.0 with default parameters on LD-pruned SNPs pre-
sent on pseudomolecules. PCA results were plotted using the R package 
‘rworldmap’ (ref. 57).

Diversity and genetic bottleneck
To characterize variation among populations, population differentia-
tion statistics (FST) were calculated in a 10-kb/2-kb sliding window using 
VCFtools v.0.1.13. A range of pairwise FST was calculated in the same 
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combinations as for the ROD calculations. Tajima’s D was calculated using 
VCFtools (“--TajimaD 100000”) in 100-kb non-overlapping windows. 
A window was considered a selection window in the upper 90% of the 
population’s empirical distribution for ROD and FST statistics, along with 
a negative Tajima’s D value (less than −2). Genes located on the selection 
windows were identified, and functional enrichment of the KEGG pathway 
(v.87.0) and GO term for these candidate genes was conducted using 
the Fisher’s exact test with false discovery rate correction using Enrich-
mentPipeline58 (https://sourceforge.net/projects/enrichmentpipeline/).

For determining population size histories and split times, the SMC++ 
programme59 v.1.13.1 was used. Individuals with more than 20% missing 
data were filtered out. We built 20 random datasets of 150 genotypes. 
For each of the 20 datasets, SMC++ was used with a generation time of 
one year and a mutation rate of 6.5 × 10−9 (ref. 60). To avoid potential bias 
in the estimates owing to the long run of homozygosity, we filtered out 
homozygous regions longer than 5 kb in the 150 samples. For each of 
the 20 estimations, we used 5 different combinations of distinguished 
lineages, as suggested previously59. We then calculated the median of 
the 20 independent estimates for each time point.

SweeD (v.3.3.1) analysis was performed as previously61 on chromo-
somes Ca1 to Ca8. To keep calculation time and resource into reason-
able burdens while staying conservative in pointing genomic regions 
as being likely to be under positive selection, 2 random sub-samples of 
251 landraces, proportional to 2,439 landraces for each geographical 
region, were considered. The analysis computes in each sub-sample 
a CLR for each SNP along the genome. We used a grid value of 10,000 
for each chromosome, corresponding roughly to computing a CLR 
ratio every 9 kb. We considered the highest 1% CLR values for each 
sample and kept them as candidate SNPs for positive selection of the 
positions detected in both samples. Owing to linkage disequilibrium, 
a high CLR value detected on an SNP can result from selection acting 
on a nearby gene. Therefore, we computed a list of intervals that are 
likely to be targeted by selection from the list of SNPs detected under 
selection, without pointing to particular SNPs but including all SNPs 
within 10 kb of each other.

Effect of nucleotide variations on protein function was predicted 
with SIFT 4G21 v.2.0.0. Putative deleterious mutations were identified 
with a SIFT score of less than 0.05. The Medicago genome was used as 
an outgroup to identify the derived alleles in the chickpea genome. 
Mutation burden was computed by counting the number of derived 
deleterious alleles present in constrained regions of the genome in 
each genotype as described before8.

Genome-wide association analysis
Genome-wide association study (GWAS) analysis was performed using 
3.94 million genome-wide SNPs and phenotypic data generated on 16 
traits for 2 seasons and 6 locations. Only biallelic SNPs in cultivated 
genotypes were used in the GWAS analysis. Furthermore, the filtration 
was done with a minor allele frequency (MAF) cut-off of 0.05, missing 
rate cut-off of 0.8 and heterozygosity rate of 0.1. Marker trait associa-
tion (MTA) analysis was then performed using a mixed linear model 
with the filtered HapMap file and phenotyping data. The first three 
PCs were used to control the population structure. The Manhattan 
plots and QQ plots were generated from the GWAS results. A P value 
of 3.16 × 10−7 was used to consider the MTA as significant.

Identification of superior haplotypes
For haplotype analysis, we retained a SNP set for 3,171 cultivated chick-
pea lines according to the following criteria: (i) MAF > 0.001; and (ii) 
proportion of missing calls per SNP < 30%. The haplotypes present 
within trait-associated genes were examined and only homozygous 
calls were considered for haplotype analysis. The identified haplotypes 
were visualized in Flapjack62 v.1.19.09.04.

For the haplo–pheno analysis, haplotypes carrying only one genotype 
were removed from the analysis. The accessions were categorized on the 

basis of haplotype groups, and together with phenotypic data, superior 
haplotypes were identified63. Haplotype-wise means for 100SW, days to 
flowering (DF) and YPP were compared to define superior haplotypes. 
Duncan’s multiple range test was used for statistical significance.

OCS approach
We used GEBV from the genomic prediction section for key produc-
tion traits (YPP, 100SW, DF and days to maturity (DM)) to generate 
a genomic relationship matrix based on 754,576 SNPs. We used the 
breeding program implementation platform MateSel v.6.3 (http://
matesel.une.edu.au) to generate an optimized mating design within 
desi, kabuli and intermediate types. The relative emphasis on the mean 
index versus co-ancestry was set by choosing the target degrees on 
the response surface24. We chose a target of 60 degrees to minimize 
the increase in population co-ancestry (maximize population genetic 
diversity) while achieving an acceptable rate of genetic gain. As this 
study aimed to maintain a diverse pre-breeding pool while making 
economic improvements, we followed the conservative approach for 
‘evolving gene banks’ (ref. 23).

We generated unique economic indices for desi and kabuli chick-
pea, which were calculated on a US$ per ha basis and included yield 
(average GEBV for YPP over 9 sites) with a bonus price for large seeds 
(when average GEBV for 100SW over 9 sites exceeded the average 
for kabuli of +5.9 g) and earliness (average GEBV for DF and DM over  
9 sites < 0 days). The base price for chickpea was assumed to be 
US$400 per tonne, and YPP was converted to an equivalent grain yield 
value per hectare by assuming that the mean YPP of 18 g per plant is 
equivalent to 1.8 tonnes per hectare. The index was also adjusted for a 
price bonus for large seeds and earliness as follows. The starting val-
ues for GEBV for 100SW are low in desi candidates (mean −4.0 g) and 
high in kabuli candidates (mean +5.9 g). Hence, the starting value for 
a price bonus for 100SW begins at GEBV + 5.9 g, and there is no bonus 
below this value. The price bonus per gram (GEBV 100SW > 5.9 g) is 
US$35 per gram, which is added to the base price. Similarly, a bonus 
was provided in price per tonne for GEBV earliness (average of GEBV 
DF and GEBV DM). The average GEBV earliness in the desi group was 
−1.6 days, and in the kabuli group was +2.4 days. The starting value 
for a price bonus for earliness begins at average GEBV 0 days; there is 
a bonus for negative values of US$10 per day added to the base price 
and no bonus for positive values.

Genomic prediction analyses
Prediction using the interaction of genomic and environmental co-
variates. As described previously25, three models, a basic model (E + L) 
with main effects of environments (E) and lines (L), a model (E + L + G) 
including the main effects of markers, and a genomic by environment 
interaction model (E + L + G + GE) were used. Three different SNP data-
sets (G1, cultivated accessions; G2, wild accessions; and G3, G1 + G2) 
were used as a genomic matrix (G), post-conventional quality controls 
on missing values (<20%) and MAF (>0.05). Phenotyping data for nine 
traits across 12 different year × location combinations were used. The 
Pearson’s correlation coefficient between observed phenotype and 
predicted genomic breeding value was used to estimate the accuracy 
of genomic prediction. Three different random cross-validation (CV) 
schemes, CV1 (evaluate the prediction accuracy of models when a cer-
tain percentage of lines are not observed in any environment), CV2 
(estimates the prediction accuracy of models when some lines are 
evaluated in some environments but not in others) and CV0 (predicts 
an unobserved environment using the remaining environments as 
a training set) were used. CV1 and CV2 with fivefold cross-validation 
were implemented to generate the training and testing sets, and the 
prediction accuracy was assessed for each testing set. The permutation 
of the five subsets led to five possible training and validation datasets. 
This procedure was repeated 20 times, and 100 runs were performed 
for each trait–environment combination on each population. The 
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same partition was used for the analysis of all the GS models. For CV0, 
each environment was predicted using the remaining environments. 
For fitting the GS models, the R package Bayesian Generalized Linear 
Regression (BGLR)64 v.1.0.7 was used.

Prediction using the WhoGEM method. For WhoGEM analysis, 1,318 
accessions with the validated geographical location were selected and 
used as a reference dataset. The SNP dataset was filtered for missing 
(>0.1) and MAF (<0.01) and used for a detailed search with ADMIXTURE65 
v.1.3.0 between K = 19 and K = 30 to identify the most likely number 
of admixture components. To confirm the admixture value, another 
method, DAPC (discriminant analysis of principal components), was 
used. The optimal number of admixture components in the WhoGEM 
method was obtained by comparing the predicted and recorded loca-
tions (ProvenancePredictor algorithm26) and fixed to K = 23.

A general linear model explored the relationships between the 
phenotypes and admixture components, and land types. A forward–
backward algorithm was used to reduce the set of predictors to the 
most significant ones. The model is fitted on the whole dataset, and 
the significant factors are identified and conserved. A negative control 
(a model without any genetics (called environment-only)) is also fit-
ted to the data. The models were fitted on the whole dataset, and the 
significant factors were identified and conserved.

A test of WhoGEM significance is given by a likelihood ratio test com-
paring the WhoGEM-based model and the environment-only-based 
model. The performances of the three models (full WhoGEM-based 
model, additive and environment-only model) are then evaluated using 
100–300 replicates of a fivefold cross-validation scheme.

Prediction using a haplotype-based approach
The SNP set was filtered, first by excluding all markers with more than 
two called alleles, missing (>10%) and MAF (<5%). A subset of 124,833 
(20%) of 2.4 million high-quality SNPs were randomly selected to reduce 
the computational load in further analyses. Those SNPs were used to 
construct LD blocks and estimate local GEBVs for haplotypes of those 
LD blocks. Details on the method used to calculate local GEBVs for 
haplotypes of LD blocks are described in a previous report27.

We also ran a ridge-regression best linear unbiased prediction (BLUP) 
model in the R-package rrBLUP (ref.66) v.4.6.0 to predict marker effects 
for seven agronomic traits, then summed up the predicted allelic effects 
of each observed haplotype for all genome-wide LD blocks. Finally, 
we estimated variances among local GEBVs for haplotypes within 
each LD block to highlight regions in the genome showing molecular  
variation linked to observed phenotypic variation for the agronomic 
traits measured in the field trials.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study have been deposited in 
the NCBI under accession code BioProject: PRJNA657888. The chickpea 
pan-genome assembly and annotations developed in this study are availa-
ble at https://doi.org/10.6084/m9.figshare.16592819. The variant calls for 
each accession and phenotype data are available to download at https://
cegresources.icrisat.org/cicerseq. Manhattan and QQ-plots for GWAS 
analysis are available at https://doi.org/10.6084/m9.figshare.15015309 
and https://doi.org/10.6084/m9.figshare.15015315, respectively. Source 
data are provided with this paper.
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Extended Data Fig. 1 | Phylogeny-based clustering. Phylogenetic tree 
represents clustering of individuals, represented through respective tracks 
(from inside to outside), Track 1: Biological status; Track 2: Market class; and 
Track 3: Geographical regions. A clear outgroup of wild accessions is observed.
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Extended Data Fig. 2 | Linkage disequilibrium decay observed among 
cultivated chickpea genotypes. (a) Rapid LD decay was observed in landraces 
(315 kb) based biological status followed by breeding lines (370 kb) and 
cultivars (670 kb). (b) Similar LD decay rate was observed among population 
based on market class, namely desi (340 kb), intermediate (330 kb) and kabuli 
(330 kb). (c) Among seven geographic populations, genotypes from Black Sea 
(352 kb) had lowest rate of LD decay followed by Central Asia (330 kb), Middle 

East (350 kb), South Asia (355 kb), Mediterranean (365 kb) and Americas 
(370 kb). The population East Africa had much slower LD decay compared to 
other population based geographic regions. (d) Cultivated accessions from 
countries Turkey (306.51 kb), Syria (316.22 kb) and Iran (320.61 kb) had more 
rapid decline of LD decay compared to cultivated accessions from other 
countries, indicating more recombination events and haplotype diversity/
number.



Extended Data Fig. 3 | Cicer species evolution. (a) Speciation and divergence 
time for eight species in the genus Cicer. The maximum likelihood phylogenetic 
tree showed clear out-grouping of C. cuneatum from the other Cicer species and 
C. reticulatum being nearest to the cultivated chickpea species (C. arietinum). 
Three time-calibration points (0.007- 0.013 Ma for C. reticulatum-C. arietinum, 
12.2-17.4 Ma for C. arietinum-C. pinnatifidum, and 30.0-54.0 Ma for C. arietinum- 
M. truncatula) were used for estimating divergence time. The nearest wild 
species (C. reticulatum and C. echinospermum) related to the cultivated 
C. arietinum were estimated to be diverged from other Cicer species around 
~15.3 (14.0-16.2) Ma. (b) Genetic diversity among wild species accessions. 
Phylogenetic tree constructed based on SNPs grouped 195 wild species 
accessions into six clusters. A clear grouping for accessions of C. judiacum, 

C. yamashitae and C. cuneatum was observed in Cluster III, Cluster V and 
Cluster VI, respectively. However, ICC 20168 (one C. pinnatifidum accession; 
red colour) grouped along with C. bijugum accessions in Cluster II; similarly, 
ICC20167 (one C. bijugum accession; blue colour) grouped along with 
C. pinnatifidum accessions in Cluster I. Cluster III and Cluster IV were divided 
into two sub-clusters each, in which both sub-clusters of Cluster III possessed 
all accessions of C. judiacum. In Cluster IVa we observed grouping of all 
C. reticulatum accessions except one C. echinospermum accession (ICC 20192; 
green colour); similarly, in Cluster IVb one accession of C. reticulatum 
(ICC 73071; golden-yellow colour) grouped along with C. echinospermum 
accessions.



Article

Extended Data Fig. 4 | Phylogenetic tree based on FST. Accessions from Mediterranean region, Middle East, Americas and Black Sea regions were clustered 
together, and South Asia as a separate cluster.



Extended Data Fig. 5 | Relationship route of chickpea diffusion and seed 
morphology. (a) PCA analysis for landraces. (b) Distance to the most extreme 
cultivated sample (closest to wild relatives) were plotted on the map. (c, d) For 
landraces with large seed morphology (kabuli; c) and small seed morphology 
(desi; d) indicated that small seed was mainly found in East-Asia, South-East 

Asia and Africa. These suggest large and small seeds were selected 
independently during chickpea diffusion of agriculture. (e) PCA results 
summarised a Central Asian diffusion alongside a Mediterranean diffusion, 
and a South Asian diffusion associated with the diffusion to East Africa.
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Extended Data Fig. 6 | Composite likelihood ratio values along the chickpea 
genome and inference of past evolution of effective size. The composite 
likelihood ratio for chromosomes 1 to 8 on the x axis is computed for two 
random subsets of 251 individuals: subset 1 (a) and subset 2 (b). Horizontal grey 
line shows the threshold above which the highest 1% CLR values are found.  
(c) Using sequentially markovian coalescent as implemented in SMC++ 

(Terhorst et al. 2017), we reconstructed the past history of effective size for  
20 sets of 150 randomly chosen cultivated genotypes (thin lines). We computed 
at each time point the median of the estimated histories and plotted it 
(bold lines). Focus was made for the plotting on timeframe 100 – 20,000 
generations ago. Both x and y axes are log-scaled.



Extended Data Fig. 7 | Neighbour-joining trees constructed using SNPs 
present on the pseudomolecules indicates a clear out-grouping of wild 
species accessions from cultivated accessions. The cultivated accessions 

formed three distinct clusters. One landrace from East Africa (ICC 16369) 
(red arrow) grouped together with wild species accessions.
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Extended Data Fig. 8 | Genetic loads in chickpea. a) A snapshot of steps and 
parameters used to estimate the mutation burden and fixed deleterious alleles. 
b) Variant annotation using SIFT revealed higher non-synonymous mutations, 
of which non-synonymous deleterious variants were used to identify deleterious 
mutations. c) Mutation burden analysis indicated a 17.88% decrease (two-tailed 
Welch’s t-test; t = 2.525, df = 27, p = 0.01772, CI = 95%) in mutation burden in 
cultivated (n = 2987) as compared to progenitor (C. reticulatum; n = 28). d) 

Mutation burden for genomic regions under selection showed that landraces 
(n = 2439) contained 206.91% higher (two-tailed Welch’s t-test, t = −17.087, 
df = 1645, p = 2.195676 × 10−60, CI = 95%) deleterious mutations than breeding 
lines (n = 396). The black solid dots in box plots represent mean values for the 
respective population. Each of the box plots shows the upper and lower 
whisker, the 25% and 75% quartiles, the median (as solid line) and the mean 
(black dot).



Extended Data Fig. 9 | Towards developing tailored chickpea with superior 
haplotypes for yield and related traits. (a) Representative desi and kabuli 
chickpea plant (on left) carrying inferior haplotype combination for key traits 
including 100 seed weight (100SW), days to maturity (DM), plant height (PLHT), 
pods per plant (PPP), and plot yield (PY). Target desi and kabuli chickpea plant 
(on right) carrying superior haplotype for 100SW, DM, PLHT, PPP and PY. New 
breeding lines can be developed by introgressing the superior haplotype 
combination through haplotype-based breeding. (b) Comparison of average 
performance among RP1 vs RP2 vs RP3 varieties for 100SW at Patancheru 
location. An increase in 100SW between the varieties of RP1 vs RP3 was 
observed, whereas no differences were observed in the case of RP1 vs RP2 and 
RP2 vs RP3 varieties (datasets of ICRISAT 2014-15 and 2015-16). RP1 indicates 

chickpea varieties released before 1993, RP2 indicates chickpea varieties 
released between 1993-2002 and RP3 indicates chickpea varieties released 
after 2002. (c) Comparison of RP2 and RP3 varieties for 100SW (with and 
without superior haplotypes) for six locations. A difference between lines 
carrying the superior haplotypes (RP3+SP) for 100SW was observed in 
comparison to those which did not (RP3-SP and RP2-SP) except for the 
Durgapura location. However, marked differences were also observed between 
the RP3-SP and RP2-SP lines, except for Patancheru and Amlaha locations. 
RP3+SP indicates RP3 varieties with superior haplotypes, RP3-SP indicates RP3 
varieties without 100SW superior haplotype and RP-SP indicates RP2 varieties 
without 100SW superior haplotype. RP2 indicates chickpea varieties released 
between 1993-2002 and RP3 indicates chickpea varieties released after 2002.
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Extended Data Fig. 10 | Response to OCS based on mating allocation for 
candidate parents and predicted cycle 1 progeny family means in economic 
index. Index increased from parents to cycle 1 progeny in the kabuli group by 
US$274/ha, and in the desi group by US$94/ha, and reflects the high value of 
large seeds in the kabuli group. Arrows indicate the population mean GEBVs for 
desi (green), kabuli (orange) and intermediate (blue) groups. (a) Response to 
selection for candidate parents. (b) Response to selection for predicted cycle 1 
progeny family. (c, d) Response to OCS among desi, kabuli and Intermediate 
accessions is shown for genomic estimated breeding values (GEBVs) for yield 
per plant (YPP, g). YPP increased by 0.6 g (4.5%) above the average candidate 
parent YPP (13.2 g) in the desi group, and by 0.4 g (3.3%) above the average 
candidate parent yield (12.2 g) in the kabuli group. Arrows indicate the population 
mean GEBVs for desi (green), kabuli (orange) and intermediate (blue) groups. 
(c) candidate parents. (d) predicted cycle 1 progeny family. (e, f) Response to 
OCS for GEBVs for 100 seed weight (100SW, g). 100SW increased by 2.0 g 

(12.7%) above the average candidate parent 100SW (15.0 g) in the desi group, 
and by 5.7 g (22.9%) above the average candidate parent 100SW (24.9 g) in  
the kabuli group. Arrows indicate the population mean GEBVs for desi (green), 
kabuli (orange) and intermediate (blue) groups. (e) candidate parents.  
(f) predicted cycle 1 progeny family. (g, h) Response to OCS for GEBVs for days 
to flower (DF). DF decreased by 3.3 d (−4.7%) below the average candidate 
parent DF (68.6 d) in the desi group, and by 1.0 d (−1.4%) below the average 
candidate parent DF (72.3 d) in the kabuli group. Arrows indicate the population 
mean GEBVs for desi (green), kabuli (orange) and intermediate (blue) groups. 
(g) candidate parents. (h) predicted cycle 1 progeny family. (i) Predicted 
average inbreeding (F) in cycle 1 progeny in among desi, kabuli and intermediate 
accessions. Progeny inbreeding increased by 0.170 in the kabuli group, by 
0.025 in the desi group, and by 0.015 in intermediate group. Arrows indicate 
the population mean GEBVs for desi (green), kabuli (orange) and intermediate 
(blue) groups.



Extended Data Fig. 11 | WhoGEM prediction accuracies for different traits 
in different sites. A general linear model was used for predicting performance 
in selected (with a geolocation) 1,318 cultivated chickpea accessions. At each 
site, 200 replicates of a fivefold cross-validation scheme are applied to estimate 
the accuracies of WhoGEM model (phenotype as a function of admixture 
components and market class) compared to environment-only model i.e. 
a model without genetic effects. Tests of WhoGEM significance are given  
by likelihood ratio tests between the WhoGEM-based models and the 
environment-only-based model. Phenology traits: (a) days to flowering (DF), 

(b) days to maturity (DM), (c) plant height (PLHT) and (d) plant stand (PLST); 
Production traits: (e) pods per plant (PPP), (f) 100 seed weight (100SW), (g) plot 
yield (PY) and (h) yield per plant (YPP) and Plant architecture traits: (i) apical 
primary branch (APB), ( j) apical secondary branch (ASB), (k) basal primary 
branch (BPB), (l) basal secondary branch (BSB), and (m) tertiary branch (TB). 
Each of the box plots shows the upper and lower whisker, the 25% and 75% quartiles 
and the median (as solid line) of the fold change (n = 1,318 cultivated 
accessions)..
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Extended Data Fig. 12 | Assessment of trait improvement potential by 
stacking the superior haplotypes for target traits. The genotypes were 
classified into three different groups (cultivars (CV, n = 152); breeding lines  
(BL, n = 396) and landraces (LR, n = 2,439)) and these genotypes were grouped 
in three subgroups s1 (CV), s2 (CV+BL) and s3 (CV+BL+LR). Local GEBVs for 
haplotypes were calculated by firstly grouping SNP markers based on their 

pairwise linkage disequilibrium, and then summing up allele effects for  
each haplotype of each block. The best possible genotype for each trait was 
generated in silico by adding up the best haplotypes across the whole genome. 
This in silico genotype was then compared to the accession with the highest 
GEBV. Each of the box plots shows the upper and lower whisker (indicated by 
dashed lines), the 25% and 75% quartiles and the median (as solid line).



Extended Data Table 1 | Summary of genome diversity features
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings of this study has been deposited in the NCBI under accession code BioProject: PRJNA657888. The chickpea pan-genome assembly 
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and annotations developed in this study are available at doi: 10.6084/m9.figshare.16592819. The variant calls for each accession and phenotype data are available 
to download at https://cegresources.icrisat.org/cicerseq. Manhattan and QQ-Plots for GWAS analysis are available at doi:10.6084/m9.figshare.15015309 and 
doi:10.6084/m9.figshare.15015315, respectively. BUSCO (odb10) and SWISS-PROT (release-2018_07).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We sequenced 3000 accessions from global chickpea composite collection, which was developed by ICRISAT genebank in collaboration with 
ICARDA to define the genetic structure and represent the maximum diversity for the isolation of allelic variants of candidate gene associated 
with beneficial traits. The composite collection is a useful resource for detecting new sources of genetic variation and allelic variants of 
candidate gene(s) associated with beneficial traits, identifying diverse lines for use in functional and comparative genomics, in mapping and 
cloning gene(s), and in applied breeding (Upadhyaya et al. 2005, Plant Genetic Resources).

Data exclusions Genotyping data was filtered using various well established criteria including % of missing, minor allele frequency and others. Similarly low 
quality phenotyping data from 3 site/year combination was filtered out. These exclusion have been defined for each analysis in the Methods 
section.

Replication The composite collection, along with very promising checks (Annigeri, G130, ICCV10, JG11, KAK2 & L550) lines, were evaluated in an 
augmented block design. The experiment was conducted at Six locations Patancheru, Amlaha, Junagadh, Kanpur, Durgapura and Sehore 
during the post-rainy season of 2014-15 and 2015-16 years. For sequencing data, no replication was attempted.

Randomization Analysis of the phenotyping data was performed by considering block as random and entry as fixed effects using the restricted maximum 
likelihood estimation procedure. Different populations in the analysis were defined based on passport information for germplasm accessions. 
For instance, based on seed type all cultivated (3171) accessions were divided into three populations/groups namely desi, kabuli and 
intermediate. Similarly, we also grouped accessions based on biological status (wild, landraces, breeding lines and cultivars) and their country 
of origin.

Blinding No blinding. All data were processed equally. 
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