292 research outputs found

    The observable light deflection angle

    Get PDF
    The physical deflection angle of a light ray propagating in a space-time supplied with an asymptotically flat metric has to be expressed in terms of the impact parameter.Comment: 11 pages, 1 figur

    The Sun Asphericities: Astrophysical Relevance

    Full text link
    Of all the fundamental parameters of the Sun (diameter, mass, temperature...), the gravitational multipole moments (of degree l and order m) that determine the solar moments of inertia, are still poorly known. However, at the first order (l=2), the quadrupole moment is relevant to many astrophysical applications. It indeed contributes to the relativistic perihelion advance of planets, together with the post-Newtonian (PN) parameters; or to the precession of the orbital plane about the Sun polar axis, the latter being unaffected by the purely relativistic PN contribution. Hence, a precise knowledge of the quadrupole moment is necessary for accurate orbit determination, and alternatively, to obtain constraints on the PN parameters. Moreover, the successive gravitational multipole moments have a physical meaning: they describe deviations from a purely spherical mass distribution. Thus, their precise determination gives indications on the solar internal structure. Here, we explain why it is difficult to compute these parameters, how to derive the best values, and how they will be determined in a near future by means of space experiments.Comment: 14 pages, 9 figures (see published version for a better resolution), submited to Proceedings of the Royal Society: Mathematical, Physical and Engineering Science

    Light deflection in Weyl gravity: critical distances for photon paths

    Full text link
    The Weyl gravity appears to be a very peculiar theory. The contribution of the Weyl linear parameter to the effective geodesic potential is opposite for massive and nonmassive geodesics. However, photon geodesics do not depend on the unknown conformal factor, unlike massive geodesics. Hence light deflection offers an interesting test of the Weyl theory. In order to investigate light deflection in the setting of Weyl gravity, we first distinguish between a weak field and a strong field approximation. Indeed, the Weyl gravity does not turn off asymptotically and becomes even stronger at larger distances. We then take full advantage of the conformal invariance of the photon effective potential to provide the key radial distances in Weyl gravity. According to those, we analyze the weak and strong field regime for light deflection. We further show some amazing features of the Weyl theory in the strong regime.Comment: 20 pages, 9 figures (see published version for a better resolution, or online version at stacks.iop.org/CQG/21/1897

    Solar gravitational energy and luminosity variations

    Full text link
    Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations (dR, dT). However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of Livingston et al. (2005), showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (dR, dT)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain faint changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by our estimate of the asphericity-luminosity parameter, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.Comment: 17 pages, 2 figure, 1 table, published in New Astronom

    Relativistic analysis of the LISA long range optical links

    Full text link
    The joint ESA/NASA LISA mission consists in three spacecraft on heliocentric orbits, flying in a triangular formation of 5 Mkm each side, linked by infrared optical beams. The aim of the mission is to detect gravitational waves in a low frequency band. For properly processing the science data, the propagation delays between spacecraft must be accurately known. We thus analyse the propagation of light between spacecraft in order to systematically derive the relativistic effects due to the static curvature of the Schwarzschild spacetime in which the spacecraft are orbiting with time-varying light-distances. In particular, our analysis allows to evaluate rigorously the Sagnac effect, and the gravitational (Einstein) redshift.Comment: 6 figures; accepted for publication in PR

    XPS DOS Studies of Oxygen-Plasma Treated YBa\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-δ\u3c/sub\u3e Surfaces as a Function of Temperature

    Get PDF
    Monochromatized Alkα XPS has been used to monitor changes in the electronic structure of 123 sintered pellets as a function of temperature (90-650K). Since 123 surfaces are known to lose oxygen and react with water, a novel procedure was used to prepare the material surface that would be representative of the bulk material. In contrast with published results, we observed drastic DOS modification (i.e. the appearance of a new peak close to the Fermi level at low temperature)

    LISACode : A scientific simulator of LISA

    Get PDF
    A new LISA simulator (LISACode) is presented. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different sub-systems on the measurements. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator. This is achieved by introducing, in a realistic manner, most of the ingredients that will influence LISA's sensitivity as well as the application of TDI combinations. Many user-defined parameters allow the code to study different configurations of LISA thus helping to finalize the definition of the detector. Another important use of LISACode is in generating time series for data analysis developments

    Are non-magnetic mechanisms such as temporal solar diameter variations conceivable for an irradiance variability?

    Full text link
    Irradiance variability has been monitored from space for more than two decades. Even if data are coming from different sources, it is well established that a temporal variability exists which can be set to as approximately 0.1%, in phase with the solar cycle. Today, one of the best explanation for such an irradiance variability is provided by the evolution of the solar surface magnetic fields. But if some 90 to 95% can be reproduced, what would be the origin of the 10 to 5% left? Non magnetic effects are conceivable. In this paper we will consider temporal variations of the diameter of the Sun as a possible contributor for the remaining part. Such an approach imposes strong constraints on the solar radius variability. We will show that over a solar cycle, variations of no more than 20 mas of amplitude can be considered. Such a variability (far from what is reported by observers conducting measurements by means of ground-based solar astrolabes) may explain a little part of the irradiance changes not explained by magnetic features. Further requirements are needed that may help to reach a conclusion. Dedicated space missions are necessary (for example PICARD, GOLF-NG or SDO, scheduled for a launch around 2008); it is also proposed to reactivate SDS flights for such a purpose.Comment: 8 pages, 2 eps figures, published in Solar Physic

    Assembly of sol-gel-grown Li<SUB>x</SUB>CoO<SUB>2</SUB> nanocrystals through electromagnetic irradiation

    Get PDF
    We report the fabrication of assembled nanostructures from the pre-synthesized nanocrystals building blocks through optical means of exciton formation and dissociation. We demonstrate that Lix CoO2 nanocrystals assemble to an acicular architecture, upon prolonged exposure to ultraviolet-visible radiation emitted from a 125 W mercury vapor lamp, through intermediate excitation of excitons. The results obtained in the present study clearly show how nanocrystals of various materials with band gaps appropriate for excitations of excitons at given optical wavelengths can be assembled to unusual nanoarchitectures through illumination with incoherent light sources. The disappearance of exciton bands due to Li xCoO2 phase in the optical spectrum of the irradiated film comprising acicular structure is consistent with the proposed mechanism of exciton dissociation in the observed light-induced assembly process. The assembly process occurs through attractive Coulomb interactions between charged dots created upon exciton dissociation. Our work presents a new type of nanocrystal assembly process that is driven by light and exciton directed
    • …
    corecore