6 research outputs found
Two N-Linked Glycosylation Sites in the V2 and C2 Regions of Human Immunodeficiency Virus Type 1 CRF01_AE Envelope Glycoprotein gp120 Regulate Viral Neutralization Susceptibility to the Human Monoclonal Antibody Specific for the CD4 Binding Domain▿
A recombinant human monoclonal antibody, IgG1 b12 (b12), recognizes a conformational epitope on human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) gp120 that overlaps the CD4 binding domain. Although b12 is able to broadly neutralize HIV-1 subtype B, C, and D viruses, many HIV-1 CRF01_AE viruses are resistant to b12-mediated neutralization. In this report, we examined the molecular mechanisms underlying the low neutralization susceptibility of CRF01_AE viruses to b12, using recently established CRF01_AE Env recombinant viruses. Our results showed that two potential N-linked glycosylation (PNLG) sites in the V2 and C2 regions of Env gp120 played an important role in regulating the susceptibility of CRF01_AE Env to b12. The locations of these PNLG sites correspond to amino acid positions 186 and 197 in HXB2 Env gp120; thus, they are designated N186 and N197 in this study. Removal of N186 significantly conferred the b12 susceptibility of 2 resistant CRF01_AE Env clones, 65CC4 and 107CC2, while the introduction of N186 reduced the b12 susceptibility of a susceptible CRF01_AE Env clone, 65CC1. In addition, removal of both N186 and N197 conferred the b12 susceptibility of 3 resistant CRF01_AE Env clones, 45PB1, 62PL1, and 101PL1, whereas the removal of either N186 or N197 was not sufficient to confer the b12 susceptibility of these CRF01_AE Env clones. Finally, removal of N197 conferred the b12 susceptibility of 2 resistant CRF01_AE Env clones lacking N186, 55PL1 and 102CC2. Taken together, we propose that two PNLG sites, N186 and N197, in Env gp120 are important determinants of the b12 resistance of CRF01_AE viruses
Design and evaluation of antiretroviral peptides corresponding to the C-terminal heptad repeat region (C-HR) of human immunodeficiency virus type 1 envelope glycoprotein gp41
AbstractTwo α-helical heptad repeats, N-HR and C-HR, located in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, play an important role in membrane fusion by forming a 6-helix bundle. C34, a peptide mimicking C-HR, inhibits the formation of the 6-helix bundle; thus, it has potential as a novel antiretroviral compound. In order to improve the inhibitory effect of C34 on HIV-1 replication, we designed new C34-derived peptides based on computational analysis of the stable conformation of the 6-helix bundle. Newly designed peptides showed a stronger inhibitory effect on the replication of recombinant viruses containing CRF01_AE, subtype B or subtype C Env than C34 or a fusion inhibitor, T-20. In addition, these peptides inhibited the replication of a T-20-resistant virus. We propose that these peptides could be applied to develop novel antiretroviral compounds to inhibit the replication of various subtypes of HIV-1 as well as of T-20-resistant variants