90 research outputs found

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3

    Full text link
    We report a synchrotron x-ray scattering study of the magnetoresistive manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes an x-ray induced structural transition at which charge ordering of Mn^3+ and Mn^4+ ions characteristic to the low-temperature state of this compound is destroyed. The transition is persistent but the charge-ordered state can be restored by heating above the charge-ordering transition temperature and subsequently cooling. The charge-ordering diffraction peaks, which are broadened at all temperatures, broaden more upon x-ray irradiation, indicating the finite correlation length of the charge-ordered state. Together with the recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results demonstrate that the photoinduced structural change is a common property of the charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data analysis mad

    Approach to the metal-insulator transition in La(1-x)CaxMnO3 (0<x<.2): magnetic inhomogeneity and spin wave anomaly

    Full text link
    We describe the evolution of the static and dynamic spin correlations of La1x_{1-x}Cax_xMnO3_3, for x=0.1, 0.125 and 0.2, where the system evolves from the canted magnetic state towards the insulating ferromagnetic state, approaching the metallic transition (x=0.22). In the x=0.1 sample, the observation of two spin wave branches typical of two distinct types of magnetic coupling, and of a modulation in the elastic diffuse scattering characteristic of ferromagnetic inhomogeneities, confirms the static and dynamic inhomogeneous features previously observed at x<<0.1. The anisotropic q-dependence of the intensity of the low-energy spin wave suggests a bidimensionnal character for the static inhomogeneities. At x=0.125, which corresponds to the occurence of a ferromagnetic and insulating state, the two spin wave branches reduce to a single one, but anisotropic. At this concentration, an anomaly appears at {\bf q0_0}=(1.25,1.25,0), that could be related to an underlying periodicity, as arising from (1.5,1.5,0) superstructures. At x=0.2, the spin-wave branch is isotropic. In addition to the anomaly observed at q0_0, extra magnetic excitations are observed at larger q, forming an optical branch. The two dispersion curves suggest an anti-crossing behavior at some {\bf q0_0'} value, which could be explained by a folding due to an underlying perodicity involving four cubic lattice spacings

    Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    Get PDF
    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phosphosilicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment

    Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films

    Full text link
    By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre- pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320 C epitaxial growth is achieved. Depending on deposition parameters the films show metallic or semiconducting behavior. At high (low) deposition temperature the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples have a large negative magnetoresistance which peaks at the Curie temperature. The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in agreement with the expected value for an ideal ferrimagnetic arrangement. We found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K, corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair. In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike contribution dominates the Hall voltage, which vanishes at low temperatures for the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages, including 5 pictures and 1 Table, submitted to Phys. Rev.

    Evidence of anisotropic magnetic polarons in la0.94_{0.94}Sr0.06_{0.06}MnO3_3 by neutron scattering and comparison with Ca-doped manganites

    Full text link
    Elastic and inelastic neutron scattering experiments have been performed in a La0.94_{0.94}Sr0.06_{0.06}MnO3_3 untwinned crystal, which exhibits an antiferromagnetic canted magnetic structure with ferromagnetic layers. The elastic small q scattering exhibits a modulation with an anisotropic q-dependence. It can be pictured by ferromagnetic inhomogeneities or polarons with a platelike shape, the largest size (17A˚\approx17\AA) and largest inter-polaron distance (\approx 38A˚\AA) being within the ferromagnetic layers. Comparison with observations performed on Ca-doped samples, which show the growth of the magnetic polarons with doping, suggests that this growth is faster for the Sr than for the Ca substitution. Below the gap of the spin wave branch typical of the AF layered magnetic structure, an additional spin wave branch reveals a ferromagnetic and isotropic coupling, already found in Ca-doped samples. Its q-dependent intensity, very anisotropic, closely reflects the ferromagnetic correlations found for the static clusters. All these results agree with a two-phase electronic segregation occurring on a very small scale, although some characteristics of a canted state are also observed suggesting a weakly inhomogeneous state.Comment: 11 pages, 11 figure

    The COSPIX mission: focusing on the energetic and obscured Universe

    Full text link
    Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the 25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger &amp; C. van Eldik), PoS(Texas 2010)25
    corecore