20,525 research outputs found

    Circular 81

    Get PDF

    Open vs Closed Access Femtocells in the Uplink

    Full text link
    Femtocells are assuming an increasingly important role in the coverage and capacity of cellular networks. In contrast to existing cellular systems, femtocells are end-user deployed and controlled, randomly located, and rely on third party backhaul (e.g. DSL or cable modem). Femtocells can be configured to be either open access or closed access. Open access allows an arbitrary nearby cellular user to use the femtocell, whereas closed access restricts the use of the femtocell to users explicitly approved by the owner. Seemingly, the network operator would prefer an open access deployment since this provides an inexpensive way to expand their network capabilities, whereas the femtocell owner would prefer closed access, in order to keep the femtocell's capacity and backhaul to himself. We show mathematically and through simulations that the reality is more complicated for both parties, and that the best approach depends heavily on whether the multiple access scheme is orthogonal (TDMA or OFDMA, per subband) or non-orthogonal (CDMA). In a TDMA/OFDMA network, closed-access is typically preferable at high user densities, whereas in CDMA, open access can provide gains of more than 200% for the home user by reducing the near-far problem experienced by the femtocell. The results of this paper suggest that the interests of the femtocell owner and the network operator are more compatible than typically believed, and that CDMA femtocells should be configured for open access whereas OFDMA or TDMA femtocells should adapt to the cellular user density.Comment: 21 pages, 8 figures, 2 tables, submitted to IEEE Trans. on Wireless Communication

    Fundamentals of Inter-cell Overhead Signaling in Heterogeneous Cellular Networks

    Full text link
    Heterogeneous base stations (e.g. picocells, microcells, femtocells and distributed antennas) will become increasingly essential for cellular network capacity and coverage. Up until now, little basic research has been done on the fundamentals of managing so much infrastructure -- much of it unplanned -- together with the carefully planned macro-cellular network. Inter-cell coordination is in principle an effective way of ensuring different infrastructure components behave in a way that increases, rather than decreases, the key quality of service (QoS) metrics. The success of such coordination depends heavily on how the overhead is shared, and the rate and delay of the overhead sharing. We develop a novel framework to quantify overhead signaling for inter-cell coordination, which is usually ignored in traditional 1-tier networks, and assumes even more importance in multi-tier heterogeneous cellular networks (HCNs). We derive the overhead quality contour for general K-tier HCNs -- the achievable set of overhead packet rate, size, delay and outage probability -- in closed-form expressions or computable integrals under general assumptions on overhead arrivals and different overhead signaling methods (backhaul and/or wireless). The overhead quality contour is further simplified for two widely used models of overhead arrivals: Poisson and deterministic arrival process. This framework can be used in the design and evaluation of any inter-cell coordination scheme. It also provides design insights on backhaul and wireless overhead channels to handle specific overhead signaling requirements.Comment: 21 pages, 9 figure

    Apartment Security: A Note on Gated Access and Rental Rates

    Get PDF
    The effect of gated access restrictions on garden apartment rents is empirically evaluated. Garden apartment rents are positively related to the presence of gated access constraints, although the combination of in-unit alarms with gated access is rent neutral. One-bedroom and two-bedroom units garner higher rents with the presence of gated access constraints. The research extends prior research on high-rise units indicating that 24-hour security positively impacts occupancy and gross rental income. Given that the study uses data from only one market, additional research for other cities and regions is warranted.

    Exact calculations of vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b in the unitary gauge

    Full text link
    In this paper, we present the exact calculations for the vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b in the unitary gauge. We found that (a) the divergent- and μ\mu-dependent terms are left in the effective vertex function Γμγ(p,k)\Gamma^\gamma_\mu(p,k) for bsγb \to s \gamma transition even after we sum up the contributions from four related Feynman diagrams; (b) for an on-shell photon, such terms do not contribute et al; (c) for off-shell photon, these terms will be canceled when the contributions from both vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b are taken into account simultaneously, and therefore the finite and gauge independent function Z0(xt)=C0(xt)+D0(xt)/4Z_0(x_t)=C_0(x_t)+ D_0(x_t)/4, which governs the semi-leptonic decay bsll+b \to s l^- l^+, is derived in the unitary gauge.Comment: 13 pages, 2 figures, Revte

    A method to take account of inhomogeneity in mechanical component reliability calculations

    Get PDF
    YesThis paper proposes a method by which material inhomogeneity may be taken into account in a reliability calculation. The method employs Monte-Carlo simulation; and introduces a material strength index, and a standard deviation of material strength to model the variation in the strength of a component throughout its volume. The method is compared to conventional load-strength interference theory. The results are identical for the case of homogeneous material, but reliability is shown to reduce for the same load as the component volume increases. The case of a tensile bar is used to explore the variation of reliability with component volume

    Distilling Quantum Entanglement via Mode-Matched Filtering

    Full text link
    We propose a new avenue towards distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Tetraquarks, hadronic molecules, meson-meson scattering and disconnected contributions in lattice QCD

    Get PDF
    There are generally two types of Wick contractions in lattice QCD calculations of a correlation function --- connected and disconnected ones. The disconnected contribution is difficult to calculate and noisy, thus it is often neglected. In the context of studying tetraquarks, hadronic molecules and meson-meson scattering, we show that whenever there are both connected and singly disconnected contractions, the singly disconnected part gives the leading order contribution, and thus should never be neglected. As an explicit example, we show that information about the scalar mesons sigma, f0(980), a0(980) and kappa will be lost when neglecting the disconnected contributions.Comment: 9 pages, 2 figure
    corecore