219 research outputs found

    Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells

    Get PDF
    Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress

    PKQuest: capillary permeability limitation and plasma protein binding – application to human inulin, dicloxacillin and ceftriaxone pharmacokinetics

    Get PDF
    BACKGROUND: It is generally assumed that the tissue exchange of antibiotics is flow limited (complete equilibration between the capillary and the tissue water). This assumption may not be valid if there is a large amount of plasma protein binding because the effective capillary permeability depends on the product of the intrinsic capillary permeability (PS) and the fraction of solute that is free in the blood (fw(B)). PKQuest, a new generic physiologically based pharmacokinetic software routine (PBPK), provides a novel approach to modeling capillary permeability in which the only adjustable parameter is the PS of muscle. METHODS: All the results were obtained by applying PKQuest to previously published human pharmacokinetic data. RESULTS: The PKQuest analysis suggests that the highly protein bound antibiotics dicloxacillin and ceftriaxone have a significant capillary permeability limitation. The human muscle capillary PS of inulin, dicloxacillin and ceftriaxone was 0.6, 13 and 6 ml/min/100 gm, respectively. The ceftriaxone protein binding is non-linear, saturating at high plasma concentrations. The experimental ceftriaxone data over a wide range of intravenous inputs (0.15 to 3 gms) was well described by PKQuest. PKQuest is the first PBPK that includes both permeability limitation and non-linear binding. CONCLUSIONS: Because of their high degree of plasma protein binding, dicloxacillin and ceftriaxone appear to have a diffusion limited exchange rate between the blood and tissue and are not flow limited as had been previously assumed. PKQuest and all the examples are freely available at

    Nongenomic oestrogen signalling in oestrogen receptor negative breast cancer cells: a role for the angiotensin II receptor AT1

    Get PDF
    INTRODUCTION: Oestrogens can mediate some of their cell survival properties through a nongenomic mechanism that involves the mitogen-activated protein kinase (MAPK) pathway. The mechanism of this rapid signalling and its dependence on a membrane bound oestrogen receptor (ER), however, remains controversial. The role of G-protein-coupled receptor and epidermal growth factor (EGF) receptor in an ER-independent signalling pathway modulated by oestrogen was investigated. METHODS: ER-positive and ER-negative breast cancer cell lines (MCF-7 and SKBR3) and primary breast cancer cell cultures were used in this study. Cell proliferation was assessed using standard MTT assays. Protein and cAMP levels were detected by Western blotting and ELISA, respectively. Antigen localization was performed by immunocytochemistry, immunohistochemistry and immunofluorescence. Protein knockdown was achieved using small interfering RNA technologies. RESULTS: EGF and oestrogen, alone and in combination, induced cell proliferation and phosphorylation of MAPK proteins Raf and ERK (extracellular signal regulated kinase)1/2 in both ER-negative SKBR3 and ER-positive MCF-7 human breast cancer cell lines. Increased Raf phosphorylation was also observed in primary human breast cultures derived from ER-positive and ER-negative breast tumours. Oestrogen induced an increase in intracellular cAMP in ER-negative SKBR3 human breast cancer cells. Oestrogen-mediated cell growth and phosphorylation of MAPK was modified by the EGF receptor antagonist AG1478, the G-protein antagonist pertussis toxin, and the angiotensin II receptor antagonist saralasin. Knockdown of angiotensin II type 1 receptor (AT1) protein expression with small interfering RNA attenuated oestrogen-induced Raf phosphorylation in ER-negative cells. AT1 receptor was found to be expressed in the cell membrane of breast tumour epithelial cells. CONCLUSION: These findings provide evidence that, in breast cancer cells, oestrogen can signal through AT1 to activate early cell survival mechanisms in an ER-independent manner

    Soluble Serum CD81 Is Elevated in Patients with Chronic Hepatitis C and Correlates with Alanine Aminotransferase Serum Activity

    Get PDF
    Aim: Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance of soluble exosomal CD81 in HCV pathogenesis is poorly defined. We performed a case-control study to investigate whether soluble CD81 in the exosomal serum fraction is associated with HCV replication and inflammatory activity. Patients and Methods: Four cohorts were investigated, patients with chronic hepatitis C (n = 37), patients with chronic HCV infection and persistently normal ALT levels (n = 24), patients with long term sustained virologic response (SVR, n = 7), and healthy volunteers (n = 23). Concentration of soluble CD81 was assessed semi-quantitatively after differential centrifugation ranging from 200 g to 100,000 g in the fifth centrifugation fraction by immunoblotting and densitometry. Results: Soluble CD81 was increased in patients with chronic hepatitis C compared to healthy subjects (p = 0.03) and cured patients (p = 0.017). Patients with chronic HCV infection and persistently normal ALT levels and patients with long term SVR had similar soluble CD81 levels as healthy controls (p>0.2). Overall, soluble CD81 levels were associated with ALT levels (r = 0.334, p = 0.016) and severe liver fibrosis (p = 0.027). Conclusion: CD81 is increased in the exosomal serum fraction in patients with chronic hepatitis C and appears to be associated with inflammatory activity and severity of fibrosis

    Promiscuous drugs compared to selective drugs (promiscuity can be a virtue)

    Get PDF
    BACKGROUND: The word selectivity describes a drug's ability to affect a particular cell population in preference to others. As part of the current state of art in the search for new therapeutic agents, the property of selectivity is a mode of action thought to have a high degree of desirability. Consequently there is a growing activity in this area of research. Selectivity is generally a worthy property in a drug because a drug having high selectivity may have a dramatic effect when there is a single agent that can be targeted against the appropriate molecular-driver involved in the pathogenesis of a disease. An example is chronic myeloid leukemia (CML). CML has a specific chromosomal abnormality, the Philadelphia chromosome, that results in a single gene that produces an abnormal protein DISCUSSION: There is a burgeoning understanding of the cellular mechanisms that control the etiology and pathogeneses of diseases. This understanding both enables and motivates the development of drugs that induce a specific action in a selected cell population; i.e., a targeted treatment. Consequently, drugs that can target distinct molecular targets involved in pathologic/pathogenetic processes, or signal-transduction pathways, are being developed. However, in most cases, diseases involve multiple abnormalities. A disease may be associated with more than one dysfunctional protein and these may be out-of-balance with each other. Likewise a drug might strongly target a protein that shares a similar active domain with other proteins. A drug may also target pleiotropic cytokines, or other proteins that have multi-physiological functions. In this way multiple normal cellular pathways can be simultaneously influenced. Long term experience with drugs supposedly designed for only a single target, but which unavoidably involve other functional effects, is uncovering the fact that molecular targeting is not medically flawless. SUMMARY: We contend that an ideal drug may be one whose efficacy is based not on the inhibition of a single target, but rather on the rebalancing of the several proteins or events, that contribute to the etiology, pathogeneses, and progression of diseases, i.e., in effect a promiscuous drug. Ideally, if this could be done at minimum drug concentration, side effects could be minimized. Corollaries to this argument are that the growing fervor for researching truly selective drugs may be imprudent when considering the totality of responses; and that the expensive screening techniques used to discover these, may be both medically and financially inefficient

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases
    corecore