1,855 research outputs found

    New experimental limit on the Pauli Exclusion Principle violation by electrons

    Get PDF
    The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. The present paper reports a new limit on the probability that PEP is violated by electrons, in a search for a shifted Kα_\alpha line in copper: the presence of this line in the soft X-ray copper fluorescence would signal a transition to a ground state already occupied by 2 electrons. The obtained value, 1/2β24.5×1028{1/2} \beta^{2} \leq 4.5\times 10^{-28}, improves the existing limit by almost two orders of magnitude.Comment: submitted to Phys. Lett.

    VIP: An Experiment to Search for a Violation of the Pauli Exclusion Principle

    Full text link
    The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its fundamental standing, it is very important to check it as thoroughly as possible. Here we describe the VIP (VIolation of the Pauli exclusion principle) experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg and G. Snow, {\it Phys. Lett. B} {\bf 238}, 438 (1990)); VIP has just completed the installation at the Gran Sasso underground laboratory, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β2/210301031\beta^2/2 \approx 10^{-30} - 10^{-31}. We report preliminary experimental results and briefly discuss some of the implications of a possible violation.Comment: Plenary talk presented by E. Milotti at Meson 2006, Cracow, 9-13 June 200

    New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)

    Full text link
    The Pauli Exclusion Principle is one of the basic principles of modern physics and is at the very basis of our understanding of matter: thus it is fundamental importance to test the limits of its validity. Here we present the VIP (Violation of the Pauli Exclusion Principle) experiment, where we search for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by at least four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10**-29 - 10**-30 region. First experimental results, together with future plans, are presented.Comment: To appear in proceedings of the XLVI International Winter Meeting on Nuclear Physics, Bormio, Italy, January 20-26, 200

    Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which is fundamental to respond longstanding questions in the non-perturbative QCD strangeness sector. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would open the possibility for the formation of cold dense baryonic matter. The confirmation of this scenario may imply a fundamental role of strangeness in astrophysics. AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset, exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In this paper, together with a review on the multi-nucleon K- absorption and the particle identification procedure, the first results on the {\Sigma}0-p channel will be presented including a statistical analysis on the possible accomodation of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc

    The VIP Experiment

    Get PDF
    The Pauli Exclusion Principle (PEP) is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its importance, it is very important to check it as thoroughly as possible. Here we describe the VIP (Violation of PEP) experiment, an improved version of the Ramberg and Snow experiment (Ramberg and Snow, Phys. Lett. B238 (1990) 438); VIP shall be performed at the Gran Sasso underground laboratories, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β221030\frac{\beta^2}{2} \sim 10^{-30}Comment: 7 pages, 5 figures, PDF only, presented by Edoardo Milotti to the conference "Quantum Theory: reconsideration of foundations-3", Vaxjo (Sweden), June, 6-11 200

    Testing the Pauli Exclusion Principle for Electrons

    Full text link
    One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 1029^{-29} - 1030^{-30}, thus improving the previous limit by 3-4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented.Comment: Proceedings DISCRETE 2012-Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, December 3-7, 201

    Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    Get PDF
    The AMADEUS experiment aims to provide unique quality data of KK^- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405)\Lambda(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon KK^- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DAΦ\PhiNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for KK^- nuclear capture on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest KK^- nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure

    High sensitivity tests of the Pauli Exclusion Principle with VIP2

    Get PDF
    The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented.Comment: 6 pages, 3 figures, Proceedings DISCRETE2014 Conferenc

    KK-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

    Full text link
    We measured the KK-series X-rays of the KpK^{-}p exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the ρSTP\rho_{\rm STP} of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.0120.003+0.004^{+0.004}_{-0.003} for KαK_{\alpha} and 0.0430.011+0.012^{+0.012}_{-0.011} for all the KK-series transitions KtotK_{tot}. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.Comment: 9 pages, 5 figures. Submitted to Nuclear Physics A, Special Issue on Strangeness and Char

    Strong interaction studies with kaonic atoms

    Get PDF
    The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.Comment: Proc. Few Body 21, 4 pages, 2 figure
    corecore