13 research outputs found

    A randomized controlled trial of nonoperative treatment versus open reduction and internal fixation for stable, displaced, partial articular fractures of the radial head: The RAMBO trial

    Get PDF
    Background: The choice between operative or nonoperative treatment is questioned for partial articular fractures of the radial head that have at least 2 millimeters of articular step-off on at least one radiograph (defined as displaced), but less than 2 millimeter of gap between the fragments (defined as stable) and that are not associated with an elbow dislocation, interosseous ligament injury, or other fractures. These kinds of fractures are often classified as Mason type-2 fractures. Retrospective comparative studies suggest that operative treatment might be better than nonoperative treatment, but the long-term results of nonoperative treatment are very good. Most experts agree that problems like reduced range of motion, painful crepitation, nonunion or bony ankylosis are infrequent with both nonoperative and operative treatment of an isolated displaced partial articular fracture of the radial head, but determining which patients will have problems is difficult. A prospective, randomized comparison would help minimize bias and determine the balance between operative and nonoperative risks and benefits. Methods/Design. The RAMBO trial (Radial Head - Amsterdam - Amphia - Boston - Others) is an international prospective, randomized, multicenter trial. The primary objective of this study is to compare patient related outcome defined by the 'Disabilities of Arm, Shoulder and Hand (DASH) score' twelve months after injury between operative and nonoperative treated patients. Adult patients with partial articular fractures of the radial head that comprise at least 1/3rd of the articular surface, have ≥ 2 millimeters of articular step-off but less than 2 millimeter of gap between the fragments will be enrolled. Secondary outcome measures will be the Mayo Elbow Performance Index (MEPI), the Oxford Elbow Score (OES), pain intensity through the 'Numeric Rating Scale', range of motion (flexion arc and rotational arc), radiographic appearance of the fracture (heterotopic ossification, radiocapitellar and ulnohumeral arthrosis, fracture healing, and signs of implant loosening or breakage) and adverse events (infection, nerve injury, secondary interventions) after one year. Discussion. The successful completion of this trial will provide evidence on the best treatment for stable, displaced, partial articular fractures of the radial head. Trial registration. The trial is registered at the Dutch Trial Register: NTR3413

    The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies.

    Get PDF
    Barth syndrome (BTHS) is an X-linked disorder characterized clinically by the associated features of cardiac and skeletal myopathy, short stature, and neutropenia. The clinical manifestations of the disease are, in general, quite variable, but cardiac failure as a consequence of cardiac dilatation and hypertrophy is a constant finding and is the most common cause of death in the first months of life. X-linked cardiomyopathies with clinical manifestations similar to BTHS have been reported, and it has been proposed that they may be allelic. We have recently identified the gene responsible for BTHS, in one of the Xq28 genes, G4.5. In this paper we report the sequence analysis of 11 additional familial cases: 8 were diagnosed as possibly affected with BTHS, and 3 were affected with X-linked dilated cardiomyopathies. Mutations in the G4.5 gene were found in nine of the patients analyzed. The molecular studies have linked together what were formerly considered different conditions and have shown that the G4.5 gene is responsible for BTHS (OMIM 302060), X-linked endocardial fibroelastosis (OMIM 305300), and severe X-linked cardiomyopathy (OMIM 300069). Our results also suggest that very severe phenotypes may be associated with null mutations in the gene, whereas mutations in alternative portions or missense mutations may give a "less severe" phenotype

    The Gene for Hereditary Bullous Dystrophy, X-Linked Macular Type, Maps to the Xq27.3-qter Region

    Get PDF
    Bullous dystrophy, hereditary macular type (McKusick 302000), is an X-linked disorder and was originally described in a single kindred in the Netherlands by Mendes da Costa and Van der Valk in 1908. To determine the location of the bullous dystrophy gene, segregation studies were performed in this family and in a recently described Italian family. Using informative polymorphic markers, the gene could initially be localized on the Xq27-q28 region. No recombinants were noted with loci in Xq27.3-q28. Fine mapping places the bullous dystrophy locus distal to DXS102 (Xq26.3) in the Italian family and distal to DXS998 (Xq27.3) in the Dutch family

    Mutations in the MTM1 Gene Implicated in X-Linked Myotubular Myopathy

    Get PDF
    X-linked recessive myotubular myopathy (XLMTM) is characterized by severe hypotonia and generalized muscle weakness, with impaired maturation of muscle fibres. The gene responsible, MTM1, was identified recently by positional cloning, and encodes a protein (myotubularin) with a tyrosine phosphatase domain (PTP). Myotubularin is highly conserved through evolution and defines a new family of putative tyrosine phosphatases in man. We report the identification of MTM1 mutations in 55 of 85 independent patients screened by single-strand conformation polymorphism for all the coding sequence. Large deletions were observed in only three patients. Five point mutations were found in multiple unrelated patients, accounting for 27% of the observed mutations. The possibility of detecting mutations and determining carrier status in a disease with a high proportion of sporadic cases is of importance for genetic counselling. More than half of XLMTM mutations are expected to inactivate the putative enzymatic activity of myotubularin, either by truncation or by missense mutations affecting the predicted PTP domain. Additional mutations are missenses clustered in two regions of the protein. Most of these affect amino acids conserved in the homologous yeast and Caenorhabditis elegans proteins, thus indicating the presence of other functional domain

    A novel X-linked gene, G4.5. is responsible for Barth Syndrome

    No full text
    Barth syndrome is a severe inherited disorder, often fatal in childhood, characterized by cardiac and skeletal myopathy, short stature and neutropenia. The disease has been mapped to a very gene-rich region in distal portion of Xq28. We now report the identification of unique mutations in one of the genes in this region, termed G4.5, expressed at high level in cardiac and skeletal muscle. Different mRNAs can be produced by alternative splicing of the primary G4.5 transcript, encoding novel proteins that differ at the N terminus and in the central region. The mutations introduce stop codons in the open reading frame interrupting translation of most of the putative proteins (which we term 'tafazzins'). Our results suggest that G4.5 is the genetic locus responsible for the Barth syndrome

    Evidence for locus heterogeneity in the Bethlem myopathy and linkage to 2q37

    No full text
    The Bethlem myopathy, a childhood onset autosomal dominant myopathy with joint contractures, has recently been localized to 21q in a series of Dutch families and the α1 and α2 subunits of type VI collagen (COL6A1 and COL6A2) have been postulated as candidate genes. We investigate a large family of French Canadian descent (family 1489) in which the Bethlem myopathy is segregating. Family 1489 is unlinked to the region of interest on 21q, thus demonstrating locus heterogeneity within the Bethlem myopathy classification. In view of the localization of the genes coding the α1 and α2 subunits of type VI collagen on chromosome 21q, we carried out linkage analysis on chromosome 2q where the α3 subunit of type VI collagen has been localized. We demonstrate linkage to markers in this region, define the region of disease gene localization, and confirm by FISH analysis that COL6A3 is located within the interval of interest making COL6A3 a feasible candidate gene for the Bethlem myopathy
    corecore