202 research outputs found
Hybridization as a facilitator of species range expansion
Explaining the evolution of species geographical ranges is fundamental to understanding how biodiversity is distributed and maintained. The solution to this classic problem in ecology and evolution remains elusive: we still do not fully know how species geographical ranges evolve and what factors fuel range expansions. Resolving this problem is now more crucial than ever with increasing biodiversity loss, global change and movement of species by humans. Here, we describe and evaluate the hypothesis that hybridization between species can contribute to species range expansion. We discuss how such a process can occur and the empirical data that are needed to test this hypothesis. We also examine how species can expand into new environments via hybridization with a resident species, and yet remain distinct species. Generally, hybridization may play an underappreciated role in influencing the evolution of species ranges. Whether—and to what extent—hybridization has such an effect requires further study across more diverse taxa
Recommended from our members
Rapid Response of an Academic Surgical Department to the COVID-19 Pandemic: Implications for Patients, Surgeons, and the Community.
BackgroundAs the coronavirus disease 2019 (COVID-19) pandemic continues to spread, swift actions and preparation are critical for ensuring the best outcomes for patients and providers. We aim to describe our hospital and Department of Surgery's experience in preparing for the COVID-19 pandemic and caring for surgical patients during this unprecedented time.Study designThis is a descriptive study outlining the strategy of a single academic health system for addressing the following 4 critical issues facing surgical departments during the COVID-19 pandemic: developing a cohesive leadership team and system for frequent communication throughout the department; ensuring adequate hospital capacity to care for an anticipated influx of COVID-19 patients; safeguarding supplies of blood products and personal protective equipment to protect patients and providers; and preparing for an unstable workforce due to illness and competing personal priorities, such as childcare.ResultsThrough collaborative efforts within the Department of Surgery and hospital, we provided concise and regular communication, reduced operating room volume by 80%, secured a 4-week supply of personal protective equipment, and created reduced staffing protocols with back-up staffing plans.ConclusionsBy developing an enabling infrastructure, a department can nimbly respond to crises like COVID-19 by promoting trust among colleagues and emphasizing an unwavering commitment to excellent patient care. Sharing principles and practical applications of these changes is important to optimize responses across the country and the world
Genetic variation during range expansion: effects of habitat novelty and hybridization
How species' ranges evolve remains an enduring problem in ecology and evolutionary biology. Species' range limits are potentially set by the inability of peripheral populations to adapt to range-edge habitat. Indeed, peripheral populations are often assumed to have reduced genetic diversity and population sizes, which limit evolvability. However, support for this assumption is mixed, possibly because the genetic effects of range expansion depend on two factors: the extent that habitat into which expansion occurs is novel and sources of gene flow. Here, we used spadefoot toads, Spea bombifrons, to contrast the population genetic effects of expansion into novel versus non-novel habitat. We further evaluated gene flow from conspecifics and from heterospecifics via hybridization with a resident species. We found that range expansion into novel habitat, relative to non-novel habitat, resulted in higher genetic differentiation, lower conspecific gene flow and bottlenecks. Moreover, we found that hybridizing with a resident species introduced genetic diversity in the novel habitat. Our results suggest the evolution of species' ranges can depend on the extent of differences in habitat between ancestral and newly occupied ranges. Furthermore, our results highlight the potential for hybridization with a resident species to enhance genetic diversity during expansions into novel habitat
Recommended from our members
The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon.
In the Americas, as in much of the rest of the world, the dengue virus vector Aedes aegypti is found in close association with human habitations, often leading to high population densities of mosquitoes in urban settings. In the Peruvian Amazon, this vector has been expanding to rural communities over the last 10-15 years, but to date, the population genetic structure of Ae. aegypti in this region has not been characterized. To investigate the relationship between Ae. aegypti gene flow and human transportation networks, we characterized mosquito population structure using a panel of 8 microsatellite markers and linked results to various potential mechanisms for long-distance dispersal. Adult and immature Ae. aegypti (>20 individuals per site) were collected from Iquitos city and from six neighboring riverine communities, i.e., Nauta, Indiana, Mazan, Barrio Florida, Tamshiaco, and Aucayo. FST statistics indicate significant, but low to moderate differentiation for the majority of study site pairs. Population structure of Ae. aegypti is not correlated with the geographic distance between towns, suggesting that human transportation networks provide a reasonable explanation for the high levels of population mixing. Our results indicate that Ae. aegypti gene flow among sub-populations is greatest between locations with heavy boat traffic, such as Iquitos-Tamshiaco and Iquitos-Indiana-Mazan, and lowest between locations with little or no boat/road traffic between them such as Barrio Florida-Iquitos. Bayesian clustering analysis showed ancestral admixture among three genetic clusters; no single cluster was exclusive to any site. Our results are consistent with the hypothesis that human transportation networks, particularly riverways, are responsible for the geographic spread of Ae. aegypti in the Peruvian Amazon. Our findings are applicable to other regions of the world characterized by networks of urban islands connected by fluvial transport routes
A computational analysis of Turkish makam music based on a probabilistic characterization of segmented phrases
This study targets automatic analysis of Turkish makam music pieces on the phrase level. While makam is most simply defined as an organization of melodic phrases, there has been very little effort to computationally study melodic structure in makam music pieces. In this work, we propose an automatic analysis algorithm that takes as input symbolic data in the form of machine-readable scores that are segmented into phrases. Using a measure of makam membership for phrases, our method outputs for each phrase the most likely makam the phrase comes from. The proposed makam membership definition is based on Bayesian classification and the algorithm is specifically designed to process the data with overlapping classes. The proposed analysis system is trained and tested on a large data set of phrases obtained by transferring phrase boundaries manually written by experts of makam music on printed scores, to machine-readable data. For the task of classifying all phrases, or only the beginning phrases to come from the main makam of the piece, the corresponding F-measures are.52 and.60 respectively.Scientific and Technological Research Council of Turkey, TUBITAK (112E162
Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination
AbstractPrimary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli31-90) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3SPOP and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli31-90, the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli31-90 ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development
A multi-institutional study of outcomes in stage I–III uterine carcinosarcoma
To evaluate the use of adjuvant therapy after primary surgery for stage I–III uterine carcinosarcoma (CS)
Metabolomics of Chronic Kidney Disease Progression: A Case-Control Analysis in the Chronic Renal Insufficiency Cohort Study
Whereas several longitudinal metabolomics studies have been conducted in individuals with normal eGFR at baseline, disease progression among individuals with established CKD has not been rigorously examined
- …