324 research outputs found

    Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at Kostomłoty (Holy Cross Mountains, Poland)

    Get PDF
    The lower Frasnian (transitans Zone with Ancyrodella priamosica = MN 4 Zone) rhythmic basin succession of marly limestones and shales (upper SzydlĆ³wek Beds) at Kostomloty, western Holy CrossMts., Central Poland, contains a record of the transgressive-hypoxic Timan Event in this drowned part of southern Laurussian shelf. The unique facies consists of organic-rich marly shales and a distinctive pyritic, goniatite level, 1.6m thick. The faunal assemblage is dominated by pyritized shells of diminutivemollusks with cephalopods (including goniatites Epitornoceras and Acanthoclymenia), buchioline bivalves (Glyptohallicardia) and styliolinids. This interval is marked by moderately low Th/U ratios and pyrite framboid size distributions suggestive of dysoxic rather than permanent euxinic conditions. The scarcity of infauna and bioturbation resulted in finely laminated sedimentary fabrics, as well as the low diversity of the presumed pioneer benthos (mostly brachiopods). In the topmost part of the SzydlĆ³wek Beds, distinguished by the Styliolina coquina interbedded between limestone-biodetrital layers, the above geochemical proxies and C-isotope positive shift indicate a tendency to somewhat increased bottom oxygen deficiency and higher carbon burial rate linked with a bloom of pelagic biota during high-productivity pulse. The geochemical and community changes are a complex regional record of the initial phase of a major perturbation in the earth-ocean system during a phase of intermittently rising sea level in the early to middle Frasnian, and associated with the highest positive C-isotope ratios of the Devonian

    Coupled Oceanic-Atmospheric Variability and U.S. Streamflow

    Full text link
    A study of the influence of interdecadal, decadal, and interannual oceanic-atmospheric influences on streamflow in the United States is presented. Unimpaired streamflow was identified for 639 stations in the United States for the period 1951ā€“2002. The phases (cold/negative or warm/positive) of Pacific Ocean (El NiƱoā€“Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and Atlantic Ocean (Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO)) oceanic-atmospheric influences were identified for the year prior to the streamflow year (i.e., long lead time). Statistical significance testing of streamflow, based on the interdecadal, decadal, and interannual oceanic-atmospheric phase (warm/positive or cold/negative), was performed by applying the nonparametric rank-sum test. The results show that in addition to the well-established ENSO signal the PDO, AMO, and NAO influence streamflow variability in the United States. The warm phase of the PDO is associated with increased streamflow in the central and southwest United States, while the warm phase of the AMO is associated with reduced streamflow in these regions. The positive phase of the NAO and the cold phase of the AMO are associated with increased streamflow in the central United States. Additionally, the coupled effects of the oceanic-atmospheric influences were evaluated on the basis of the long-term phase (cold/negative or warm/positive) of the interdecadal (PDO and AMO) and decadal (NAO) influences and ENSO. Streamflow regions in the United States were identified that respond to these climatic couplings. The results show that the AMO may influence La NiƱa impacts in the Southeast, while the NAO may influence La NiƱa impacts in the Midwest. By utilizing the streamflow water year and the long lead time for the oceanic-atmospheric variables, useful information can be provided to streamflow forecasters and water managers

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001Ė‰000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Is the Unadjusted ICU Mortality a Good Indicator of Quality of ICU Care?

    Get PDF
    info:eu-repo/semantics/publishedVersio

    South American streamflow and the extreme phases of the Southern Oscillation

    Get PDF
    This study investigates the extent of the affect [sic] of the El NiƱo/Southern Oscillation on South American streamflow. The response of South American precipitation and temperature to the extreme phases of ENSO (El NiƱo and La NiƱa events) is well documented; but the response of South American hydrology has been barely studied. Such paucity of research contrasts sharply with that available on the response of North American streamflow to ENSO events

    The 2009-2010 El Nino: Hydrologic relief to U.S. regions

    Full text link
    Current forecasts by the U.S. National Oceanic and Atmospheric Administration (NOAA) are that the Pacific Ocean will experience El NiƱo conditions in late 2009 and into 2010. These forecasts are similar to past El NiƱo events in 1972ā€“1973, 1982ā€“1983, 1986ā€“1987, and 2002ā€“2003. Evaluating the hydrologic conditions for these past El NiƱo events reveals that during these times, surface water supply conditions improved in many parts of the United States, including the Southeast, Midwest, and Southwest. At the same time, the Pacific Northwest and other specific regions of the United States experienced below-average water supply conditions. This is consistent with the long-established linkages between oceanic-atmospheric phenomena, El NiƱo, and streamflow [e.g., Kahya and Dracup, 1993; Tootle et al., 2005]

    Using Multi-indices Approach to Quantify Mangrove Changes Over the Western Arabian Gulf along Saudi Arabia Coast

    Get PDF
    Mangroves habitat present an important resource for large coastal communities benefiting from activities such as fisheries, forest products and clean water as well as protection against coastal erosion and climate related extreme events. Yet they are increasingly threatened by natural pressure and anthropogenic activities. We observed an inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a vital habitat and resource for the local ecosystem, according to the United Stated Geological Survey (USGS) mangrove database through spectral analysis. Change detection analysis is conducted on mangrove forests along the Saudi Arabian coast of the WAG for the years 2000, 2010 and 2018 using Landsat 7 & 8 data. Three supervised classification methodologies are employed for mangrove mapping, including Supported Vector Machine (SVM), Decision Tree (DT), referred to as Classification and Regression Trees (CART) and Random Forest (RF). CARTā€™s accuracy was recorded to be \u3e95% while other classifiers were \u3e90%. The CART supervised learning classifier, mapping mangrovesā€™ distribution and biomass using Google Earth Engine (GEE) online platform, indicates an overall increase in the northern Tarut Bay and Tarut Island, by 0.21ā€Ækm2 from 2000 to 2010 and by 1.4ā€Ækm2 from 2010 to 2018. The increase might be due to mitigation strategies such as mangrove breeding and plantation. It can be challenging to detect changes in certain regions due to the inadequate resolution of Landsat where submerged mangroves can be confused with salt marshes and macro algae. We employed a new method to identify and analyze submerged mangrove forests distribution via a submerged mangrove recognition index (SMRI) and Normalized Difference Vegetation Index (NDVI) in Abu Ali Island. Our results show the robustness of SMRI as an effective indicator to detect submerged mangroves in both high and medium spatial resolution satellite images. NDVI values differentiated submerged mangroves from tidal flats between Landsat 7 & 8 as well as during conditions of low and high tides. High resolution WorldView-2 image showed agreement of mangroves distribution with the SMRI and NDVI results

    Investigating the Significance of Aerosols in Determining the Coronavirus Fatality Rate Among Three European Countries

    Get PDF
    The coronavirus pandemic has not only gripped the scientific community in the search for a vaccine or a cure but also in attempts using statistics and association analysisā€”to identify environmental factors that increase its potency. A study by Ogen (Sci Total Environ 726:138605, 2020a) explored the possible correlation between coronavirus fatality and high nitrogen dioxide exposure in four European countriesā€”France, Germany, Italy and Spain. Meanwhile, another study showed the importance of nitrogen dioxide along with population density in determining the coronavirus pandemic rate in England. In this follow-up study, Aerosol Optical Depth (AOD) was introduced in conjunction with other variables like nitrogen dioxide and population density for further analysis in fifty-four administrative regions of Germany, Italy and Spain. The AOD values were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites while the nitrogen dioxide data were extracted from TROPOMI (TROPOspheric Monitoring Instrument) sensor onboard the Sentinel-5 Precursor satellite. Regression models, as well as multiple statistical tests were used to evaluate the predictive skill and significance of each variable to the fatality rate. The study was conducted for two periods: (1) pre-exposure period (Dec 1, 2019ā€“Feb 29, 2020); (2) complete exposure period (Dec 1, 2019ā€“Jul 1, 2020). Some of the results pointed towards AOD potentially being a factor in estimating the coronavirus fatality rate. The models performed better using the data collected during the complete exposure period, which showed higher AOD values contributed to an increased significance of AOD in the models. Meanwhile, some uncertainties of the analytical results could be attributed to data quality and the absence of other important factors that determine the coronavirus fatality rate
    • ā€¦
    corecore