20 research outputs found

    Emergence and resilience in multi-agent reinforcement learning

    Get PDF
    Our world represents an enormous multi-agent system (MAS), consisting of a plethora of agents that make decisions under uncertainty to achieve certain goals. The interaction of agents constantly affects our world in various ways, leading to the emergence of interesting phenomena like life forms and civilizations that can last for many years while withstanding various kinds of disturbances. Building artificial MAS that are able to adapt and survive similarly to natural MAS is a major goal in artificial intelligence as a wide range of potential real-world applications like autonomous driving, multi-robot warehouses, and cyber-physical production systems can be straightforwardly modeled as MAS. Multi-agent reinforcement learning (MARL) is a promising approach to build such systems which has achieved remarkable progress in recent years. However, state-of-the-art MARL commonly assumes very idealized conditions to optimize performance in best-case scenarios while neglecting further aspects that are relevant to the real world. In this thesis, we address emergence and resilience in MARL which are important aspects to build artificial MAS that adapt and survive as effectively as natural MAS do. We first focus on emergent cooperation from local interaction of self-interested agents and introduce a peer incentivization approach based on mutual acknowledgments. We then propose to exploit emergent phenomena to further improve coordination in large cooperative MAS via decentralized planning or hierarchical value function factorization. To maintain multi-agent coordination in the presence of partial changes similar to classic distributed systems, we present adversarial methods to improve and evaluate resilience in MARL. Finally, we briefly cover a selection of further topics that are relevant to advance MARL towards real-world applicability.Unsere Welt stellt ein riesiges Multiagentensystem (MAS) dar, welches aus einer Vielzahl von Agenten besteht, die unter Unsicherheit Entscheidungen treffen müssen, um bestimmte Ziele zu erreichen. Die Interaktion der Agenten beeinflusst unsere Welt stets auf unterschiedliche Art und Weise, wodurch interessante emergente Phänomene wie beispielsweise Lebensformen und Zivilisationen entstehen, die über viele Jahre Bestand haben und dabei unterschiedliche Arten von Störungen überwinden können. Die Entwicklung von künstlichen MAS, die ähnlich anpassungs- und überlebensfähig wie natürliche MAS sind, ist eines der Hauptziele in der künstlichen Intelligenz, da viele potentielle Anwendungen wie zum Beispiel das autonome Fahren, die multi-robotergesteuerte Verwaltung von Lagerhallen oder der Betrieb von cyber-phyischen Produktionssystemen, direkt als MAS formuliert werden können. Multi-Agent Reinforcement Learning (MARL) ist ein vielversprechender Ansatz, mit dem in den letzten Jahren bemerkenswerte Fortschritte erzielt wurden, um solche Systeme zu entwickeln. Allerdings geht der Stand der Forschung aktuell von sehr idealisierten Annahmen aus, um die Effektivität ausschließlich für Szenarien im besten Fall zu optimieren. Dabei werden weiterführende Aspekte, die für die echte Welt relevant sind, größtenteils außer Acht gelassen. In dieser Arbeit werden die Aspekte Emergenz und Resilienz in MARL betrachtet, welche wichtig für die Entwicklung von anpassungs- und überlebensfähigen künstlichen MAS sind. Es wird zunächst die Entstehung von emergenter Kooperation durch lokale Interaktion von selbstinteressierten Agenten untersucht. Dazu wird ein Ansatz zur Peer-Incentivierung vorgestellt, welcher auf gegenseitiger Anerkennung basiert. Anschließend werden Ansätze zur Nutzung emergenter Phänomene für die Koordinationsverbesserung in großen kooperativen MAS präsentiert, die dezentrale Planungsverfahren oder hierarchische Faktorisierung von Evaluationsfunktionen nutzen. Zur Aufrechterhaltung der Multiagentenkoordination bei partiellen Veränderungen, ähnlich wie in klassischen verteilten Systemen, werden Methoden des Adversarial Learning vorgestellt, um die Resilienz in MARL zu verbessern und zu evaluieren. Abschließend wird kurz eine Auswahl von weiteren Themen behandelt, die für die Einsatzfähigkeit von MARL in der echten Welt relevant sind

    Memory Bounded Open-Loop Planning in Large POMDPs using Thompson Sampling

    Full text link
    State-of-the-art approaches to partially observable planning like POMCP are based on stochastic tree search. While these approaches are computationally efficient, they may still construct search trees of considerable size, which could limit the performance due to restricted memory resources. In this paper, we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory bounded approach to open-loop planning in large POMDPs, which optimizes a fixed size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four large benchmark problems and compare its performance with different tree-based approaches. We show that POSTS achieves competitive performance compared to tree-based open-loop planning and offers a performance-memory tradeoff, making it suitable for partially observable planning with highly restricted computational and memory resources.Comment: Presented at AAAI 201

    Uncertainty-Based Out-of-Distribution Classification in Deep Reinforcement Learning

    Full text link
    Robustness to out-of-distribution (OOD) data is an important goal in building reliable machine learning systems. Especially in autonomous systems, wrong predictions for OOD inputs can cause safety critical situations. As a first step towards a solution, we consider the problem of detecting such data in a value-based deep reinforcement learning (RL) setting. Modelling this problem as a one-class classification problem, we propose a framework for uncertainty-based OOD classification: UBOOD. It is based on the effect that an agent's epistemic uncertainty is reduced for situations encountered during training (in-distribution), and thus lower than for unencountered (OOD) situations. Being agnostic towards the approach used for estimating epistemic uncertainty, combinations with different uncertainty estimation methods, e.g. approximate Bayesian inference methods or ensembling techniques are possible. We further present a first viable solution for calculating a dynamic classification threshold, based on the uncertainty distribution of the training data. Evaluation shows that the framework produces reliable classification results when combined with ensemble-based estimators, while the combination with concrete dropout-based estimators fails to reliably detect OOD situations. In summary, UBOOD presents a viable approach for OOD classification in deep RL settings by leveraging the epistemic uncertainty of the agent's value function.Comment: arXiv admin note: text overlap with arXiv:1901.0221
    corecore