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Abstract

Our world represents an enormous multi-agent system (MAS), consisting of a
plethora of agents that make decisions under uncertainty to achieve certain
goals. The interaction of agents constantly affects our world in various ways,
leading to the emergence of interesting phenomena like life forms and civiliza-
tions that can last for many years while withstanding various kinds of distur-
bances. Building artificial MAS that are able to adapt and survive similarly to
natural MAS is a major goal in artificial intelligence as a wide range of poten-
tial real-world applications like autonomous driving, multi-robot warehouses,
and cyber-physical production systems can be straightforwardly modeled as
MAS. Multi-agent reinforcement learning (MARL) is a promising approach to
build such systems which has achieved remarkable progress in recent years.
However, state-of-the-art MARL commonly assumes very idealized conditions
to optimize performance in best-case scenarios while neglecting further aspects
that are relevant to the real world.
In this thesis, we address emergence and resilience in MARL which are impor-
tant aspects to build artificial MAS that adapt and survive as effectively as
natural MAS do. We first focus on emergent cooperation from local interaction
of self-interested agents and introduce a peer incentivization approach based on
mutual acknowledgments. We then propose to exploit emergent phenomena
to further improve coordination in large cooperative MAS via decentralized
planning or hierarchical value function factorization. To maintain multi-agent
coordination in the presence of partial changes similar to classic distributed
systems, we present adversarial methods to improve and evaluate resilience in
MARL. Finally, we briefly cover a selection of further topics that are relevant
to advance MARL towards real-world applicability.

VII



VIII



Zusammenfassung

Unsere Welt stellt ein riesiges Multiagentensystem (MAS) dar, welches aus
einer Vielzahl von Agenten besteht, die unter Unsicherheit Entscheidungen
treffen müssen, um bestimmte Ziele zu erreichen. Die Interaktion der Agen-
ten beeinflusst unsere Welt stets auf unterschiedliche Art und Weise, wodurch
interessante emergente Phänomene wie beispielsweise Lebensformen und Zi-
vilisationen entstehen, die über viele Jahre Bestand haben und dabei unter-
schiedliche Arten von Störungen überwinden können. Die Entwicklung von
künstlichen MAS, die ähnlich anpassungs- und überlebensfähig wie natürli-
che MAS sind, ist eines der Hauptziele in der künstlichen Intelligenz, da viele
potentielle Anwendungen wie zum Beispiel das autonome Fahren, die multi-
robotergesteuerte Verwaltung von Lagerhallen oder der Betrieb von cyber-
phyischen Produktionssystemen, direkt als MAS formuliert werden können.
Multi-Agent Reinforcement Learning (MARL) ist ein vielversprechender An-
satz, mit dem in den letzten Jahren bemerkenswerte Fortschritte erzielt wur-
den, um solche Systeme zu entwickeln. Allerdings geht der Stand der Forschung
aktuell von sehr idealisierten Annahmen aus, um die Effektivität ausschließ-
lich für Szenarien im besten Fall zu optimieren. Dabei werden weiterführende
Aspekte, die für die echte Welt relevant sind, größtenteils außer Acht gelassen.
In dieser Arbeit werden die Aspekte Emergenz und Resilienz in MARL betrach-
tet, welche wichtig für die Entwicklung von anpassungs- und überlebensfähi-
gen künstlichen MAS sind. Es wird zunächst die Entstehung von emergenter
Kooperation durch lokale Interaktion von selbstinteressierten Agenten unter-
sucht. Dazu wird ein Ansatz zur Peer-Incentivierung vorgestellt, welcher auf
gegenseitiger Anerkennung basiert. Anschließend werden Ansätze zur Nutzung
emergenter Phänomene für die Koordinationsverbesserung in großen koopera-
tiven MAS präsentiert, die dezentrale Planungsverfahren oder hierarchische
Faktorisierung von Evaluationsfunktionen nutzen. Zur Aufrechterhaltung der
Multiagentenkoordination bei partiellen Veränderungen, ähnlich wie in klassi-
schen verteilten Systemen, werden Methoden des Adversarial Learning vorge-
stellt, um die Resilienz in MARL zu verbessern und zu evaluieren. Abschließend
wird kurz eine Auswahl von weiteren Themen behandelt, die für die Einsatz-
fähigkeit von MARL in der echten Welt relevant sind.
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1. Introduction

Do cities learn? Not the individuals
who populate cities, not the
institutions they foster, but the cities
themselves. I think the answer is yes.

Emergence
Steven Johnson

1.1. Motivation

Agents are everywhere. An agent is an autonomous entity which is able to
make decisions under uncertainty to achieve a certain goal. Our world con-
sists of a plethora of agents, naturally representing an enormous multi-agent
system (MAS). Agents may represent MAS themselves, consisting of several
sub-agents. All agent decisions, no matter what level, constantly affect our
world and our future in various unpredictable ways.
Genes represent natural MAS on a micro-level that jointly decide how a living
organism is supposed to be built – without actually "knowing" the future be-
havior and lifestyle of the resulting organism [12]. Such organisms represent
agents on a higher level that can make decisions on their own with uncer-
tain future consequences to themselves, their surroundings – and their genes.
Humans are highly intelligent specimen of organisms that can make complex
decisions to pursue a variety of goals by collaborating or competing with each
other regardless of kinship and race [3, 7].
Unlike genes, where failures are ultimately punished by nature with extinc-
tion, humans and many other organisms are able to learn from experience
and therefore being able to adapt to changing circumstances, e.g., caused by
natural disasters, conflicts, or economic crises [4]. Through learning, humans
successfully established MAS in form of civilizations and nations that last for
centuries while withstanding various kinds of disturbances [23].
We define external disturbances in a MAS as events that naturally occur in
the environment regardless of any agent behavior like seismic activities or as-
tronomical events [23]. Internal disturbances in a MAS, on the other hand,
are directly caused by agent behavior, e.g., in case of defection, manipulation,
or failures [79]. Human society exhibits impressively high degrees of resilience
against both kinds of disturbances as humankind managed to adapt and sur-
vive for thousands of years [3, 12].
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1. Introduction

Building artificial MAS that are able to solve complex tasks while withstanding
disturbances similarly to natural MAS is a major goal in artificial intelligence
(AI) [74, 87]. Many potential real-world applications of AI like autonomous
driving, multi-robot warehouses, and cyber-physical production systems can
be straightforwardly modeled as MAS, consisting of several autonomous com-
ponents with individual or common objectives [31, 46, 91]. Reinforcement
Learning (RL) provides a general framework to enable agents to learn and
adapt from experience [69, 76]. Multi-agent RL (MARL) extends RL to MAS,
where all agents are additionally trained to interact with each other [3, 87].
Recent advances in complex board and video games have demonstrated the po-
tential of MARL to build artificial MAS under idealized conditions [70, 84, 85].
However, there are several important aspects that need further consideration
in order to advance MARL towards real world applicability.
In this thesis, we focus on emergence and resilience in MARL, where

Emergence is a phenomenon that arises from local interaction of multiple
agents, representing an effect that comprises more than just the mere
sum of parts or interactions [11]. Life in organisms is the emergent re-
sult of multiple interacting genes despite genes themselves being actually
non-living molecules [12]. Living organisms exhibit interactive behavior
on their own to jointly form swarms or civilizations which steadily evolve
and adapt as a whole. In these examples, agents are usually only aware of
their local interaction but not of potential global consequences. Emer-
gence therefore represents some kind of self-organizing macrobehavior
without any centralized controller [23].

Resilience is the ability of a MAS to withstand external and internal dis-
turbances. Animal groups like swarms, flocks, or herds are resilient as
the occasional loss or mutation of some individuals does not affect the
existence of the whole group [23]. Global economy is typically resilient
against crises, since most companies are able to adapt through emer-
gency plans and innovation. Even if single companies die out, the global
economy itself persists. Classic distributed systems are designed with
resilience in mind to ensure constant availability of data and services
without failing entirely. Resilience is therefore required to maintain cer-
tain emergent properties of the MAS [79].

The main contents presented in the thesis are based on the following central
hypothesis:

Hypothesis 1.1

Emergence and resilience are important aspects that need to be con-
sidered in MARL in order to build artificial multi-agent systems that
adapt and survive in the real world as effectively as natural multi-agent
systems do.
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1.2. Scope and Research Questions

1.2. Scope and Research Questions

Our goal is to provide methods that explicitly consider emergence and resilience
to advance MARL towards building artificial MAS according to our central
hypothesis 1.1. We focus on multi-agent cooperation in various settings to
build cohesive agent systems that directly benefit our world1 [79]. Unless
stated otherwise, we simply use the term agent for artificial agent.
The research presented in this thesis is guided by the following questions:

(Q1) Can cooperation emerge in MARL from local interaction? As
self-learning agents become more and more omnipresent in the real
world, they will inevitably learn to interact with each other. Non-
cooperative game theory and empirical studies have shown that naive RL
approaches commonly fail to cooperate, possibly leading to undesirable
emergent results. We present a peer incentivization protocol, where
agents learn to cooperate from mutual acknowledgments. Our approach
is only based on local information and communication therefore offering
scalability which is useful in a steadily expanding world of agents.

(Q2) How to maintain emergent cooperation in MARL? Achieving
emergent cooperation under specific circumstances is an important step
towards real-world deployment of agents. However, the real world is
messy with many unpredictable external factors that could destabilize
cooperative situations. In our peer incentivization protocol mentioned
in Q1, we introduce a penalization mechanism that enables agents to
reciprocate in order to maintain cooperation even under social pressure,
where many agents compete for scarce resources. We also demonstrate
that the locality of information and communication naturally provides
some degree of resilience against random protocol defections and
communication failures.

(Q3) How to consider emergence to improve performance in MARL?
Learning typically involves self-reflection about past or potential future
behavior. Cooperative MARL often exploits global information like
states and joint actions during training to produce coordinated strategies
for decentralized decision making. However, emergent phenomena can
dynamically occur in various forms and levels which are difficult to
deduce from mere states and joint actions therefore limiting performance
and scalability. We propose to explicitly consider emergence in form of
globally tracked models for prediction and dynamic team structures for
hierarchization to overcome these limitations.

1We point out that emergence and resilience are not necessarily limited to cooperation
though. The insights drawn from the thesis can be applied to the opposite as well, where
multi-agent defection is desirable, e.g., to uncover weaknesses or flaws in a MAS [23, 82].
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1. Introduction

(Q4) How to improve resilience in MARL against partial changes? As
known from classic distributed systems, partial changes can occur as
internal disturbances in MAS, where agents unexpectedly alter their
behavior due to updates, manipulation, or flaws. Thus, even fully
cooperative MAS should be prepared for partial changes to prevent
catastrophic failure. While many works on MARL assume idealistic con-
ditions to optimize performance for the best-case, we focus on worst-case
scenarios in cooperative MAS and propose antagonist-based methods,
where all agents can potentially change their behavior adversarially to
expose the target system to less idealistic situations.

(Q5) How to evaluate resilience in MARL against partial changes?
The performance of a MAS is often evaluated in best-case scenarios,
where the MAS under test consists of the exact same agents as seen
during training therefore not considering the possibility of partial change
at all. In addition to our antagonist-based methods mentioned in Q4,
we propose testing methods to evaluate resilience of any MAS using
dedicated test sets of cooperative and adversarial agents.

(Q6) What are further relevant topics? Beside emergence and resilience,
there are many other topics that are also relevant to building artificial
MAS for the real world. We briefly present a selection of work regarding
resource efficiency, state uncertainty, and non-cooperative emergence.

1.3. Thesis Structure

Chapter 2 provides background knowledge and important terms that are rele-
vant for the main body of the thesis. In each main chapter as listed in Table
1.1, we give a brief introduction and present a selection of results but also
refer to the corresponding literature and the attached publications for a better
overall understanding.

Table 1.1.: Overview of the main contents of the thesis.
Thesis chapter Questions Publications
3. Emergent Cooperation in General-Sum Games Q1, Q2 [55]
4. Emergence in Cooperative Multi-Agent RL Q3 [49, 53, 54]
5. Resilience in Cooperative Multi-Agent RL Q4, Q5 [47, 51]
6. Further Topics Q6 [18, 48, 50, 52]

Chapter 7 concludes the thesis by connecting the findings to the research ques-
tions of Section 1.2 and provides potential directions for future research.
All publications that contributed to this thesis are listed in Table 1.1. Further
information on the publications is provided in the appendix.
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2. Background

[...] if bacteria can play games, so
can people and nations.

The Evolution of Cooperation
Robert Axelrod

2.1. Multi-Agent Settings

We formulate MAS as partially observable stochastic game (POSG) M =
〈D,S,A,P ,R,Z,Ω, b0〉, where D = {1, ..., N} is a set of agents i, S is a
set of states st at time step t, A = 〈A1, ...,AN〉 = 〈Ai〉i∈D is the set of
joint actions at = 〈at,i〉i∈D, P(st+1|st, at) is the state transition probability,
R(st, at) = 〈Ri(st, at)〉i∈D = 〈rt,i〉i∈D ∈ R is the joint reward, Z is a set of
(local) observations zt,i for each agent i, Ω(st) = zt = 〈zt,i〉i∈D ∈ ZN is the
joint observation of state st, and b0 is the probability distribution over initial
states s0 ∈ S [13, 19]. Each agent i maintains a (local) history τt,i ∈ (Z ×Ai)t
with τt = 〈τt,i〉i∈D being the joint history. A belief state b(st|τt) is a sufficient
statistic for joint history τt and defines a probability distribution over states
st given τt which can be updated by Bayes’ theorem [25, 41, 61].
A joint policy π = 〈πi〉i∈D with (local) policies πi, defines the joint action
probability π(at|τt) =

∏
i∈D πi(at,i|τt,i). We define π−i as opponent policies

such that π = 〈πi, π−i〉. For convenience, we use the term opponent of agent
i for all other agents j 6= i without strictly assuming a competitive game as
suggested in [14]. The return of agent i is defined by Gt,i =

∑T−1
c=0 γ

crt+c,i,
where T is the horizon and γ ∈ [0, 1] is the discount factor. Local policies πi
can be evaluated with a value function defined by V π

i (τt) = Eπ,b0,P [Gt,i|τt].
Nash equilibria are a solution concept describing joint policies π+ = 〈π+

i 〉i∈D,
where all π+

i maximize their values w.r.t. the opponent policies π+
−i such that

V π+

i = V +
i ≥ V

〈πi,π+
−i〉

i for all πi. Another concept are optimal joint policies
π∗ = 〈π∗i 〉i∈D, where social welfare, i.e., the utilitarian metric or efficiency
U =

∑
i∈DG0,i, is maximized such that Eπ∗,b0,P [U ] ≥ Eπ,b0,P [U ] for all π.

We assume that all agents only perceive their own observations zt+1,i and
rewards rt,i but have no knowledge about the actual state st or their opponents’
actions, observations, or rewards. In addition, we assume all agents to be
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2. Background

rational, i.e., act to maximize their individual values1 V π
i [62, 66].

POSGs can model various multi-agent scenarios with different purposes and
challenges. In this thesis, we focus on the following settings:

Cooperative Games are situations of pure coordination, where all agents
i, j ∈ D share the same global reward rt = rt,i = rt,j thus need to
collaborate to achieve a common goal [6, 41, 66]. Tasks that are solv-
able in a distributed manner like multi-robot warehouse commissioning
or automated manufacturing in smart factories, naturally represent a co-
operative game [31, 46]. A Nash equilibrium in a cooperative game is
equivalent to an optimal joint policy such that π+ = π∗ [6].

Zero-Sum Games are situations of pure competition with N = 2 agents hav-
ing opposing rewards rt,1 = −rt,2 [33, 66]. Zero-sum games are often
used for learning and testing policy robustness in worst-case scenarios
[16, 56, 82]. A Nash equilibrium in a zero-sum game consists of two min-
imax optimal policies π+ = 〈π+

1 , π
+
2 〉 which maximize their respective

worst-case value defined by V +
i = maxπiminπj{V

〈πi,πj〉
i } [33].

General-Sum Games represent the middle ground between pure coordina-
tion and competition, where all agents i ∈ D have individual preferences
expressed by their respective rewards rt,i. Self-learning systems designed
for different tasks form a general-sum game when sharing the same en-
vironment [14, 17]. Those systems or agents can learn to benefit from
interaction with each other [87]. In general, there can be multiple Nash
equilibria with different levels of social welfare, where the true system
goal depends on domain-dependent aspects [66].

Due to our focus on multi-agent cooperation, we adopt an optimization per-
spective to find optimal joint policies2 π∗ in cooperative and general-sum games
or minimax optimal policies π+ in zero-sum games respectively [33, 41, 67].
The joint policy π could in principle be realized with a centralized controller
which has access to the joint history τt. However, this would limit scalability,
privacy, and resilience in practice [41]. We therefore focus on learning local
policies πi for decentralized decision making.

2.2. Dynamic Programming

Local policies πi can be optimized with dynamic programming (DP) by assum-
ing that the opponent policies π−i are fixed and known [40]. Given a model of

1The values may change, e.g., due to opponent adaptation or peer incentivization.
2Searching for Nash equilibria π+ is a sensible goal for cooperative and zero-sum games
but not necessarily desirable for general-sum games because they can be globally inefficient
[3, 12, 67]. Furthermore, prior work implies that knowing one’s opponent is often more
beneficial than merely striving for a Nash equilibrium [62, 67, 73].
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2.3. Multi-Agent Reinforcement Learning

the environment M , πi can be evaluated by computing V π
i for all τt:

V π
i (τt) =

∑

at∈A
π(at|τt)

∑

st∈S
b(st|τt)

(
Ri(st, at) + γ

∑

st+1∈S
P(st+1|st, at)V π

i (τt+1)

)

(2.1)
where τt+1 = 〈τt, at, zt+1〉 is the updated joint history as concatenation of τt,
at, and zt+1 = Ω(st+1).
πi can be improved with V π

i by selecting actions that maximize the value for
all joint histories τt. The iterative process of alternating policy evaluation and
policy improvement is known as policy iteration and provably converges to an
optimal local policy given that all other policies π−i are fixed [58, 76].
Value iteration is an alternative DP algorithm to compute the optimal value
function V ∗i from a random guess V 0

i by repeatedly applying the following
update for all τt until convergence [19, 40]:

V k+1
i (τt)← maxat∈A




∑

st∈S
b(st|τt)

(
Ri(st, at) + γ

∑

st+1∈S
P(st+1|st, at)V k

i (τt+1)

)


(2.2)
An optimal policy for agent i is then determined by maximizing V ∗i .
DP can find optimal joint policies π∗ in cooperative games via policy or value
iteration, e.g., by optimizing all local policies alternatingly while keeping the
opponent policies fixed or by backward policy construction [19, 40].
However, finding optimal joint policies in POSGs is NEXP-complete hence
being intractable for long-horizon games with many states and agents because
of the curse of dimensionality w.r.t. the space of belief states, which is |S|-
dimensional, as well as exponentially scaling joint action and history spaces
[41]. Furthermore, DP requires the explicit distributions of b0 and P , which
are infeasible to specify for large state spaces S. Practical algorithms based
on DP often use a black box simulator as generative model for Monte Carlo
planning, function approximation techniques for RL, or a combination of both
[27, 39, 69, 71].

2.3. Multi-Agent Reinforcement Learning

Multi-agent RL (MARL) can approximate optimal policies π∗i from experience
which is generated through explorative3 interaction between agent i with a sim-
ulated or real environment along with all opponents. Many MARL algorithms
approximate the action-value function Qπ

i instead of V π
i [15, 60, 72]:

3The exploration-exploitation dilemma is a fundamental RL problem to balance between
data acquisition and convergence speed, which is out of scope for this thesis.
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2. Background

Qπ
i (τt, at) = Eπ,b0,P

[T−1∑

c=0

γcRi(st+c, at+c)
∣∣∣τt, at

]
(2.3)

= Eb0
[
Ri(st, at) + γ

∑

st+1∈S

P(st+1|st, at)V π
i (τt+1)

∣∣∣τt, at
]

(2.4)

=
∑

st∈S

b(st|τt)
(
Ri(st, at) + γ

∑

st+1∈S

P(st+1|st, at)V π
i (τt+1)

)
(2.5)

The optimal action-value function Q∗i is defined analogously to V ∗i . In fully
observable games, πi can be improved by maximizing Qπ

i without depending
on P therefore enabling model-free control [6, 76]. Most real-world domains
are too large for a tabular representation of Qπ

i , V π
i , and πi though. Thus,

function approximation techniques like deep learning are used to train an ap-
proximator Q̂i,ω ≈ Qπ

i or V̂i,ω ≈ V π
i with parameters ω [39, 68, 80]. πi can be

improved through maximization of Q̂i,ω or actor-critic methods by training an
approximator π̂i,θ with parameters θ via gradient ascent on Q̂i,ω or V̂i,ω [77].
For simplicity, we always omit θ, ω and write π̂i, Q̂i, and V̂i instead.
We focus on the following MARL paradigms that can be combined and applied
to any multi-agent setting from Section 2.1:

Independent Learning applies single-agent RL techniques to each agent in
the game [78]. Functions like Qπ

i and V π
i that require global information,

i.e., st, τt, or at, are approximated using local information, i.e., τt,i and
at,i, per agent i such that Q̂i(τt,i, at,i) ≈ Qπ

i (τt, at) or V̂i(τt,i) ≈ V π
i (τt) re-

spectively. Independent learning offers optimal scalability in all settings
due to the locality of information and parallelization of training but ig-
nores concurrent adaptation of opponents which causes non-stationarity
therefore lacking convergence guarantees [28, 72].

Centralized Training for Decentralized Execution (CTDE) assumes
training to take place in a laboratory or a simulator hence having access
to global information to learn Q̂i(τt, at) ≈ Qπ

i (τt, at) or V̂i(τt) ≈ V π
i (τt).

Local policy approximators π̂i are trained with Q̂i or V̂i, e.g., via
actor-critic methods or value function factorization and can be executed
independently afterwards without requiring Q̂i or V̂i anymore [15, 60].

Adversarial Learning assumes a zero-sum game to train two agents or agent
teams with opposing objectives. Adversarial learning can be realized in
different ways like self-play, alternating training, or co-evolution and is
used to learn minimax optimal policies π+ to achieve safe and resilient
behavior, to validate RL systems, or to build MAS with potentially un-
known agents [16, 33, 38, 82].
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3. Emergent Cooperation in
General-Sum Games

Not being nice may look promising at
first, but in the long run it can
destroy the very environment it
needs for its own success.

The Evolution of Cooperation
Robert Axelrod

3.1. Learning in Social Dilemmas

What will happen if two or more agents meet each other for the first time?
Let us assume that all agents originate from different manufacturers and have
individual goals therefore being self-interested. Let us further assume that all
agents – regardless of their origins – are unaware of each others’ goals and any
global information while being able to adapt to individual experience using
independent learning. In autonomous driving, e.g., several self-driving cars
need to coordinate their decisions without knowing each others’ destinations
or the preferences of each others’ passengers. In a smart home, multiple intelli-
gent devices like cleaning robots and smart speakers share the same household
while having obviously different purposes and probably never met each other
before. Despite initial mutual unawareness, all agents will inevitably learn
to interact with each other – either directly or through manipulation of the
shared environment [3, 87]. As self-learning systems are becoming more and
more omnipresent in the future, such scenarios are becoming the norm, not the
exception [14, 17]. We can naturally formulate them as general-sum games.
Sharing an environment means competing over its resources which can cause
self-interested agents to adopt defective policies that exploit each other and
harm social welfare, e.g., self-driving cars causing traffic jams due to greedy
navigation or the cleaning robot of a smart home removing all smart speak-
ers to keep the household "quiet and clean". Such tension between individual
and collective rationality is typically modeled as social dilemma (SD), i.e., a
general-sum game, where Nash equilibria π+ are different from optimal joint
policies π∗ such that individual rationality would lead to worse outcomes than
is possible [3, 12]. Although scenarios of mutual defection are certainly not
desirable for real-world applications, non-cooperative game theory and empir-
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3. Emergent Cooperation in General-Sum Games

ical studies have shown that naive independent learning agents commonly fail
to cooperate in SDs as studied extensively for the prisoner’s dilemma [4, 59].
Fortunately, studies from evolutionary biology and human society have shown
that cooperation can still emerge in various ways despite all individuals be-
ing (presumably) selfish at the core [4, 7, 12, 81]. Especially human society
is seen as an "unusual and interesting special case" of emergent cooperation
that is not exclusively based on kinship or race thus providing inspiration
for building agents that are able to cooperate out of self-interest [3, 7, 12].
However, merely establishing emergent cooperation is not sufficient to sustain
social welfare under social pressure, where many agents compete for scarce
resources [30, 45]. Furthermore, cooperative situations could be easily desta-
bilized through disturbances [3, 12]. Hence, reciprocity is important to achieve
and maintain cooperation in general-sum games by adequately responding to
both cooperative and defective opponent behavior [3].
To address the above challenges, we present a scalable peer incentivization
approach based on a two-phase communication protocol in the next section.

3.2. Mutual Acknowledgment Exchange

Peer incentivization (PI) is an increasingly popular MARL approach, where
agents learn to reward each other to achieve emergent cooperation in SDs
[35, 64, 83, 90]. Flawless communication is often assumed to exchange re-
wards which are simply integrated into the learning process without further
feedback. PI is motivated by evolutionary biology and human society, where
individuals incentivize each other via supporting actions or side payments in
the hope of future compensation [22, 81]. While conceptually interesting, most
PI approaches rely on global information like joint actions [90], central market
functions [64], or publicly available information [83] which limits scalability
and applicability to real-world scenarios. Another common weakness is the
lack of opponent penalization for reciprocity, which makes most PI approaches
vulnerable to social pressure and disturbances.
Therefore, we propose Mutual Acknowledgment Token Exchange (MATE), a
PI approach defined by a two-phase communication protocol to mutually ex-
change acknowledgment tokens xtoken > 0 to shape rewards for independent
learning [55]. After every state transition, each agent i evaluates themonotonic
improvement MIi of its situation defined by:

MIi(r̂t,i) = MI〈τt,i,at,i,rt,i,zt+1,i〉,V̂i(r̂t,i) = r̂t,i + γV̂i(τt+1,i)− V̂i(τt,i) (3.1)

which is the temporal difference (TD) residual of V̂i w.r.t. to some arbitrary
reward r̂t,i estimating the expected long-term improvement of agent i.
The two-phase communication protocol of exchanging rewards using acknowl-
edgment tokens xi = xtoken > 0 is based on humans thanking and acknowledg-
ing each other as illustrated in Figure 3.1. After the acknowledgment token
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3.2. Mutual Acknowledgment Exchange

agent 1

agent 2

agent 3

(a) Request phase

agent 1

agent 2

agent 3

(b) Response phase

Figure 3.1.: MATE protocol example. (a) If agent 1 estimates a monotonic
improvement MI1(rt,1) ≥ 0 of its situation, it "thanks" its neigh-
bor agents 2 and 3 by sending an acknowledgment request x1 > 0
as reward. (b) Agent 2 and 3 check if the request x1 monotoni-
cally improves their own situation along with their own respective
reward. If so, a positive reward (e.g., y2 = +x1) is sent back as a
response. If not, a negative reward (e.g., y3 = −x1) is sent back.
Image taken from [55].

exchange, the shaped reward r̂MATE
t,i for each agent i is computed as follows:

r̂MATE
t,i = rt,i + r̂req + r̂res = rt,i + max{〈xj〉j∈Nt,i}+ min{〈yj〉j∈Nt,i} (3.2)

where r̂req ∈ {0, xtoken} is the aggregation of all received requests xj and
r̂res ∈ {−xtoken, 0, xtoken} is the aggregation of all received responses yj. r̂MATE

t,i

replaces the original reward rt,i to stably learn cooperative local policies using
any RL algorithm, e.g., actor-critic methods.
MATE advances existing PI approaches w.r.t. scalability, stability, and re-
silience against external disturbances. MATE is completely decentralized, only
relying on local information, i.e., individual experience and rewards exchanged
within a local neighborhood Nt,i thus being more scalable than most prior
PI approaches. The term r̂res in Equation 3.2 enables penalization which is
necessary for reciprocity to maintain social welfare. Due to the locality of infor-
mation and communication, MATE naturally exhibits some degree of resilience
as local disturbances should not affect the whole MAS.
Empirical results from [55] show that MATE achieves and maintains signif-
icantly higher levels of cooperation than alternative MARL w.r.t. different
metrics in sequential SD domains as shown in Figure 3.2 for Harvest with 12
agents. The modified TD residual of V̂i in Equation 3.1 is shown to be a suit-
able monotonic improvement estimator to incentivize emergent cooperation.
MATE is able to maintain social welfare in contrast to prior PI approaches,
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3. Emergent Cooperation in General-Sum Games

which become unstable under social pressure and switch to more defective
strategies [35, 90]. MATE is also able to maintain its superior cooperation
in the presence of random protocol defections and communication failures as
shown in Figure 3.2c and 3.2d.

(a) Harvest Domain (N = 12)

(b) Original Setting (c) Protocol Defectors (d) Communication Failures

Figure 3.2.: (a) Harvest domain inspired by [45]. All agents (red circles) need
to collect apples (green squares) while avoiding to be tagged and
exhaustion of all apples which would prevent regrowth of apples.
(b-d) Performance of MATE (as MATE-TD) compared to alterna-
tive MARL approaches in different settings of Harvest. (b) Learn-
ing progress of MATE and alternative MARL in the standard set-
ting. (c) MATE exhibits resilience w.r.t. protocol defectors as
social welfare is not harmed. (d) MATE is able to maintain its su-
perior cooperation even when communication fails with a chance
of up to 80%. Image and results taken from [55]
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4. Emergence in Cooperative
Multi-Agent RL

There is great power and creative
energy in self-organization [...] but it
needs to be channeled toward specific
forms for it to blossom into
something like intelligence.

Emergence
Steven Johnson

How do we know that our society is doing well? Or that it is improving after
all? In the previous chapter, we studied how cooperation can emerge in general-
sum games as a positive effect of local interaction and adaptation. The agents
are not "aware" that their individual decisions lead to overall cooperation
though [23]. They simply adapt out of self-interest.
Many distributed real-world applications like multi-robot warehouses or smart
factories represent purely cooperative games, where all agents are part of a
team, sharing a common goal [31, 46]. While still being able to make individual
decisions, all agents now need to collaborate to not just achieve emergent
cooperation but overall coordination, i.e., cooperation in the best way possible.
In such cooperative settings, we assume all agents to be trained together in
a controlled environment, e.g., in a laboratory or a simulator with access to
global information, e.g., states and joint actions, to learn a centralized value
function Q̂ or V̂ according to the CTDE paradigm explained in Section 2.3.
The resulting policies are deployable for decentralized decision making.
Multi-agent credit assignment is a central challenge in cooperative games, since
all agents only observe a single global reward. Hence, the deduction of individ-
ual contributions is difficult and could lead to uncoordinated policies or "lazy"
agents [8, 75, 89]. Another challenge is the limited representational capacity
of the centralized value function approximator which becomes a performance
bottleneck [5, 49, 53]. Both challenges can lead to the emergence of poor local
optima, especially in large MAS with many agents.
As state-of-the-art CTDE is often limited to a handful of agents despite ex-
ploiting states and joint actions during training, we hypothesize that explicit
consideration of emergence is needed to effectively address the above chal-
lenges. From a theory of mind perspective, providing higher level knowledge
beyond mere states and joint actions could enable agents and CTDE regimes to
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4. Emergence in Cooperative Multi-Agent RL

effectively "read the (emergent) mind" of the whole MAS therefore potentially
improving overall coordination in large cooperative games [23, 57].
In the following sections, we present two MARL approaches that explicitly con-
sider emergence in form of globally tracked models for prediction or dynamic
team structures for hierarchization to overcome the limitations of state-of-the-
art CTDE.

4.1. Distributed Policy Iteration

According to the dual-system theory, human reasoning is guided by a system
1, which is fast and intuitive, and a system 2, which is slow and (self-)reflective
[26]. Hybrid (RL) approaches like AlphaZero or Expert Iteration realize system
1 using statistical methods to learn a fast and generalizing policy π̂ while sys-
tem 2 is based on symbolic or model-based methods like planning, representing
a stronger but computationally more expensive policy π̃ [2, 69]. The fast pol-
icy approximator of π̂ is trained via imitation of the symbolic policy π̃ while
π̃ is improved by using the fast policy π̂ as a prior for efficient reasoning. So
far, state-of-the-art hybrid approaches mainly focused on single-agent systems
or symmetric zero-sum games hence only requiring a single planning process
to guide policy learning without any coordination [65].
To learn optimal policies in cooperative games, system 2 can be implemented
on different levels. Centralized planning could realize high-level (but not emer-
gent) reasoning for optimal coordination in the MAS. However, as noted in
Section 2.2, centralized planning of optimal joint policies π∗ is intractable due
to exponential computation time. Centralized Monte Carlo planning (MCP)
could address the curse of dimensionality regarding (belief) states via statisti-
cal sampling and a generative model but also does not scale to large MAS due
to exponential branching factors caused by the joint action space A [1, 71].
Decentralized MCP, on the other hand, could realize low-level reasoning in a
scalable way but possibly leads to the emergence of uncoordinated behavior.
Beside the generative model, decentralized MCP requires knowledge of the
opponent policies π−i for coordinated planning [10].
To address this dilemma, we propose Stable Emergent Policies (STEP), a dis-
tributed policy iteration scheme, combining centralized learning for policy eval-
uation and decentralized MCP for policy improvement [49, 54]. Centralized
learning approximates the emergent joint policy π̂ via agent-wise imitation
of the decentralized planners π̃ = 〈π̃i〉i∈D and a centralized value function V̂
to evaluate π̃. Decentralized MCP is implemented with agent-wise open-loop
Monte Carlo Tree Search (MCTS) and reintegrates π̂ and V̂ to predict emer-
gent effects in order to improve efficiency and coordination w.r.t. V̂ . After
training, the approximated policies π̂i can be executed in a decentralized way
without depending on V̂ , opponent policies π̂−i, or the slower MCTS anymore.
The whole STEP training scheme is illustrated in Figure 4.1.
Integrating π̂ and V̂ improves decentralized MCP in the following aspects:
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4.1. Distributed Policy Iteration

Value Function

Planner 1 Planner N

Policy 1 Policy NJoint Policy

...

Full Observability (only required during training)

Partial Observability (present in production / execution)

Policy Evaluation

Policy Improvement

Policy Learning

Figure 4.1.: Training architecture of STEP and information flow between the
learned policies π̂i,θi (red), the learned value function V̂ω (blue),
and the decentralized planners (green). The policy iteration com-
ponents (blue and green) within the gray dashed rectangle use
global information and are only required during centralized learn-
ing, while the learned policies (red) can act under partial observ-
ability. Image taken from [49].

Prediction of potential emergent effects is generally a non-trivial task due
to non-stationarity and opponent uncertainty. Since π̂ is trained via
imitation of all decentralized planners π̃, reintegrating π̂ into the MCTS
process enables explicit consideration of potential opponent behavior.
This effectively addresses the credit assignment problem, allowing for
decentralized improvement of individual decisions for the global benefit.

Infinite horizon planning is enabled by V̂ , which can extend the foresight of
MCP to potentially infinite horizons [68, 70]. V̂ is learned from global
experience produced by all decentralized planners π̃ thus being able to
predict the expected return based on simulated states in each planner.
Learning V̂ instead of Q̂ alleviates the performance bottleneck problem,
since the input space of V̂ only depends on S without A.

Open-loop planning with closed-loop priors can significantly reduce the
branching factor by merely focusing on individual action sequences. De-
spite lacking optimality guarantuees in stochastic domains, open-loop
planning can still be effective in large domains with restricted computa-
tional resources, often outperforming closed-loop counterparts in practice
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4. Emergence in Cooperative Multi-Agent RL

[29, 44, 86]. We use π̂i as closed-loop prior to weight actions depending
on simulated histories in the MCTS selection rule which maximizes:

UCB1π̂iNdt(τt,i, at,i) = Q(Ndt, at,i) + π̂i(at,i|τt,i)c
√

2log(nt,i)
nat,i

(4.1)

where Ndt is a node in the open-loop tree, Q is the tracked open-loop
action value, c > 0 is an exploration constant, nt,i is the visitation count
of node Ndt, and nat,i is the action count of at,i in node Ndt. π̂i can po-
tentially recommend different prior actions for the same action sequences
due to explicitly considering observations which would be otherwise ig-
nored therefore enabling efficient and effective search.

We evaluated STEP in a predator-prey and a smart factory domain. Our abla-
tion results suggest that integrating π̂ and V̂ can significantly improve overall
coordination in cooperative games therefore improving π̂i [49, 54]. Combin-
ing decentralized open-loop MCTS with closed-loop priors can be superior to
closed-loop MCTS when the computation budget is low or when the branching
factor is intractably large [54]. The policy approximations of STEP outper-
form model-free CTDE approaches like COMA and QMIX in settings with up
to 200 agents. The results indicate that our hybrid approach offers a more
effective solution to the multi-agent credit assignment and performance bot-
tleneck problem through explicit consideration of emergent effects instead of
merely regarding states and joint actions [49].

4.2. Variable Agent-Sub Teams

Hybrid approaches like STEP combine statistical and symbolic methods to
produce fast and effective policy approximations. However, MCP requires
sufficient simulations per decision hence adding computational costs and being
prohibitive if simulations are expensive. Thus, we focus on model-free MARL
in the following.
The state-of-the-art in model-free MARL is based on value function factoriza-
tion (VFF), where the centralized value function Q̂ = Qtot is decomposed into
local value functions 〈Qi〉i∈D using a learned VFF operator Ψ. Therefore, VFF
directly addresses the multi-agent credit assignment problem via end-to-end
learning [60, 72, 75]. However, most VFF approaches are limited to a hand-
ful of agents in most domains due to the flat factorization scheme, where Ψ
becomes a performance bottleneck with increasing number of agents N .
To this end, we propose VFF with variable agent sub-teams (VAST) to address
that performance bottleneck problem [53]. Instead of directly factorizing Q̂ for
each agent, VAST approximates a factorization using a VFF operator Ψ for
K ≤ N disjoint agent sub-teams Dt,k ⊆ D which can be defined in an arbitrary
way and vary over time, e.g., to adapt to different situations. The sub-team
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Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Figure 4.2.: Our hierarchical factorization scheme based on K = 2 sub-team
values QD

t,k, which are linearly decomposed into local values Qj per
sub-team member j ∈ Dt,k ⊆ D. Image reproduced from [53].

valuesQD
t,k are linearly decomposed for all sub-team members j ∈ Dt,k via value

decomposition networks (VDN) [75]. VDN offers a simple and flexible way to
learn sub-team member values Qj of variable sized sub-teams without adding
further complexity through additional parameters. The hierarchization enables
Ψ to learn on a more focused and compact input representation. Agents can be
assigned to sub-teams by an arbitrary assignment operator X without loosing
any guarantuees w.r.t. decentralizability. The hierarchical VFF scheme is
illustrated in Figure 4.2.
Our empirical results in Figure 4.3 show that a random sub-team assignment
XRandom can already be sufficient to outperform flat VFF approaches like QMIX
and QTRAN in large-scale domains with up to 800 agents [53]. However, we
found that meta optimization of agent sub-teams w.r.t. the return or utilitarian
metric U is most effective due to successfully exploiting emergence in form of
dynamic team structures.
Figure 4.4 shows an example for emergent sub-teams in the Battle domain de-
termined by a meta-gradient optimizing assignment operator XMetaGrad. The
sub-teams vary depending on the situation, enabling the learning process to
adapt accordingly in order to further improve performance compared to alter-
native assignments like spatial clustering (XSpatial), which would simply deter-
mine sub-teams based on spatial distances regardless of the actual situation.
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(a) Warehouse[16] (b) Battle[80] (c) GaussianSqueeze[800]

Figure 4.3.: Average training progress of VAST with sub-team assignment
operator X ∈ {XRandom,XFixed,XSpatial,XMetaGrad}, ΨQTRAN, and
η = 1

4
as well as the respective best VFF baselines reported in

[53]. Results taken from [53].

(a) early, XMetaGrad (b) middle, XMetaGrad (c) late, XMetaGrad

(d) early, XSpatial (e) middle, XSpatial (f) late, XSpatial

Figure 4.4.: Visualizations of the determined sub-teams of XMetaGrad with η = 1
4

and XSpatial with k-means clustering using 10 centroids at different
stages (early, middle, late) in Battle[80] after training. All learning
agents (round circles) of the same sub-team have the same color.
Image taken from [53].
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5. Resilience in Cooperative
Multi-Agent RL

Do we assume, in real life [...], that
we are playing a zero sum game when
we are not?

The Selfish Gene
Richard Dawkins

What happens if something goes wrong or not the way we expected? In human
society, this question often arises when planning activities under uncertainty to
prepare for undesirable or unexpected events. In Chapter 3 and 4, we focused
on emergent cooperation and coordination via MARL, where we assumed all
agents to act exactly according to their learned policies even in the presence
of external disturbances. However in the real world, agents themselves can
change unexpectedly by altering their policies due to updates, manipulation,
or flaws in hardware and software [79]. Such internal disturbances or partial
changes can cause catastrophic failures, i.e., mutual defection in general-sum
games or degrading performance in cooperative games with potentially severe
consequences in industrial and safety-critical domains [82].
Resilience has been considered a main motivation for artificial MAS and is
commonly found in natural MAS like animal groups or human society, and in
classic distributed systems, which are able to survive various kinds of partial
change. Resilient artificial MAS are supposed to withstand partial changes by
ensuring "graceful degradation" of performance without failing entirely [41].
However, many works on cooperative MARL commonly assume idealized con-
ditions, where all agents only optimize the best-case performance while being
evaluated against the exact same agents as seen during training [15, 60, 85].
The possibility of partial change is therefore not considered at all.
We argue that even when being trained for a fully cooperative task, a MAS
should always be prepared for partial changes and exhibit resilience similar to
natural MAS and classic distributed systems to prevent catastrophic failure.
Due to the high complexity in MAS, there are many possibilities for agents
to deviate from their original policy with potentially negative global impact
which cannot be considered exhaustively a priori. We take inspiration from en-
gineering of classic distributed systems, which focuses on worst-case scenarios
to ensure dependability through resilience, e.g., reliable and secure commu-
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nication or permanent availability of data and services, without exhaustive
consideration of partial changes [79]. Thus, we focus on worst-case scenarios
in MARL using adversarial learning techniques.
In the following sections, we propose two adversarial MARL approaches to
improve resilience in cooperative games. We also provide testing methods to
evaluate resilience w.r.t. partial changes based on dedicated agent test sets.

5.1. Antagonist-Ratio Training Scheme

The goal is to build cooperative MAS which are resilient against partial failure.
Our target system represents a cooperative gameMC = M withN agents i ∈ D
and a common reward rt = Ri(st, at) for all i ∈ D as defined in Section 2.1
For learning and testing, we reformulate the target system as mixed
(cooperative-competitive) game MX with N agents i ∈ DX = Dpro ∪ Dant and
Dpro ∩ Dant = ∅. Dpro ⊆ D is a team of protagonists and represents a set of
functional agents of the target system MC . Dant is a team of antagonists and
represents a set of adversarial agents, i.e., some partial change in the MAS.
The protagonists observe the original reward rt,pro = rt of MC , while the an-
tagonist reward is defined by rt,ant = −rt,pro. MX represents a zero-sum game
between two agent teams Dpro and Dant, where each team consists of internally
cooperating agents [34].
We define the antagonist-ratio Rant = |Dant|

|D| as adversarial fraction in the
mixed-game MX . If Rant = 0, then MX reduces to the target system MC .
Based on this setting, we propose an Antagonist-Ratio Training Scheme
(ARTS) [51]. Since all agents of the target system may be subject to par-
tial change, we maintain a pool of N protagonist policies π̂pro = 〈π̂i,pro〉i∈D and
a pool of N antagonist policies π̂ant = 〈π̂i,ant〉i∈D to model an adversarial coun-
terpart for each agent or protagonist i ∈ D of the target system. We therefore
aim to approximate minimax optimal joint policies π̂pro ≈ π+ for various MX

rather than an optimal joint policy π∗ for the target system MC .
Given a fixed Rant, there are theoretically

(
N−1
N ·Rant

)
possible antagonist team

compositions per protagonist i ∈ D. To avoid exhaustive exposure of all
antagonist team compositions to all agents, we train π̂pro and π̂ant on randomly
sampled mixed-games MX , where πX is composed of a random selection of
protagonist and antagonist policies according to Rant. A centralized value
function Q̂(τt, at) ≈ EMX ,πX [QπX (τt, at)] is learned via CTDE based on the
protagonist rewards rt,pro. The policies of π̂pro are then updated to maximize Q̂,
while the policies of π̂ant are updated to minimize Q̂ according to the minimax
principle [33, 66]. Figure 5.1 gives an overview of ARTS.
ARTS can also be used to test resilience of MAS by omitting the policy updates.
Given some cooperative MAS with joint policy π = π̂pro and an antagonist
policy pool π̂ant, e.g., provided by domain experts or a different MARL process,
the scheme from Figure 5.1 can be used to evaluate performance w.r.t. different
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Episode 1:

Episode 2:

Episode T:

...

Protagonists Antagonists

Sample

with

Run T mixed-game episodes 

with randomly sampled

}Train policies
or evaluate
test results

Figure 5.1.: Overview of the components and an example process of ARTS
with Rant = 0.5 and N = 4. Image reproduced from [51].

partial change scenarios depending on Rant. With ARTS, all agents of a target
system can be evaluated with opponents or antagonists from different training
processes to truly assess the ability of a MAS to withstand partial changes.
Testing π with Rant = 0 corresponds to evaluating the best-case performance
similarly to most state-of-the-art works on MARL.
We evaluated ARTS in a simulated cyber physical production system (CPPS)
as shown in Figure 5.2a using DQN(Rant), QMIX(Rant), and QMixMax as
QMIX( |D|−1|D| ). The completion rate of produced items is used as performance
measure. Our results in Figure 5.3a show that antagonist-based training with
Rant > 0 is competitive to idealized MARL w.r.t. best-case performance for ad-
equately chosen Rant. Figure 5.3b shows the results of a cross-validation, where
protagonists and antagonists from independent QMIX(Rant) training processes
with different Rant are evaluated in random mixed-games using ARTS. We can
see a tradeoff between resilience and best-case performance, where training
with large Rant leads to better resilience against more antagonists but rather
poor performance in actually cooperative settings. Training with Rant > 0
always improves resilience compared to idealized cooperative MARL except
QMixMax, which focuses on extreme cases, where a single protagonist faces
N − 1 antagonists and always performs poorly. However, the antagonists of
QMixMax are able to easily uncover flaws in MAS therefore being well suited
for testing [51].

5.2. Adversarial Value Decomposition

Adversarial MARL approaches like ARTS often focus on specialized settings,
assuming adversaries with a fixed strength defined by a hyperparameter like
Rant [32, 51]. The resulting performance and resilience therefore depends on
the choice of Rant, which must be either known a priori or extensively tuned.
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Figure 5.2.: Two CPPS instances with Rant = 1
4
. The white and red cylin-

ders represent protagonists and antagonists respectively. (a, b)
CPPS[4] as 4-agent setting with 1 antagonist. (c) CPPS[16] as
16-agent setting with 4 antagonists. Image taken from [47].

Having a fixed Rant can lead to inflexible policies, which either perform well
in purely cooperative settings or in mixed-games with many antagonists, but
rarely in both. Furthermore, Rant may affect the training quality, e.g., if
Rant is too large, the sampled mixed-games become too difficult to learn any
meaningful protagonist policy as indictated by QMixMax in Figure 5.3.

To this end, we propose Resilient Adversarial value Decomposition with
Antagonist-Ratios (RADAR) to flexibly train protagonists and antagonists
with variable Rant hence overcoming the limitations of ARTS [47]. RADAR is
a CTDE approach based on the same setting as ARTS, assuming a coopera-
tive target system MC , which is trained via random mixed-games MX using
protagonist and antagonist policy pools.

In RADAR, Rant ∈ [0, 1) is iteratively sampled from a uniform distribution
during training thus enabling training with mixed-games of varying number of
protagonists and antagonists. RADAR uses VDN-based value function factor-
ization, where two value functions Q̂pro and Q̂ant are approximated for protag-
onists and antagonists respectively:
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(a) Learning progress (b) Cross-validation

Figure 5.3.: (a) Learning progress of 50 runs of DQN and QMIX using ARTS,
Minimax, and QMixMax in CPPS[4]. (b) Cross-validation of pro-
tagonists and antagonists trained with different antagonist-ratios
Rant using QMIX or QMixMax. Results taken from [51].

Q̂pro(τt,pro, at,pro) =
∑

i∈Dpro

Q̂i,pro(τt,i, at,i) = Eπ,b0,P
[ |Dpro|

N
Gt,pro

∣∣∣τt, at
]

(5.1)

Q̂ant(τt,ant, at,ant) =
∑

j∈Dant

Q̂j,ant(τt,j, at,j) = −Eπ,b0,P
[ |Dpro|

N
Gt,pro

∣∣∣τt, at
]

(5.2)

where Gt,pro is the return of protagonist rewards rt,pro and |Dpro|
N

is used to
normalize Gt,pro w.r.t. the current number of participating protagonists as the
scale of Gt,pro otherwise gives more weight to settings, where Rant is small.
Q̂pro and Q̂ant can be approximated via end-to-end learning using backpropa-
gation on 〈Q̂i,pro〉i∈Dpro and 〈Q̂j,ant〉j∈Dant respectively [75]. Local policies can
be derived from Q̂i,pro and Q̂j,ant using, e.g., multi-armed bandits or actor-critic
methods. The striking simplicity of VDN compared to alternative non-linear
factorization methods is beneficial when training teams of variable sizes as
mentioned in Section 4.2.
Many works on MARL simply evaluate the best-case using only the exact same
agents as seen during training. Hence, it is unclear if the MAS would still
behave as intended if some agents were replaced, e.g., by "newer versions" in
case of an update, or by adversarially behaving agents in case of manipulation
or flaws. Therefore, in addition to RADAR, we propose an agent-based test
scheme to evaluate performance and resilience in MAS in a fair way [47].
Before training the target system, we prepare some test suites Tcooperation and
Tfailure,Rant which consist of pretrained protagonist or antagonist agents, e.g.,
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5. Resilience in Cooperative Multi-Agent RL

created by domain experts or any kind of adversarial MARL like ARTS or
RADAR. During training, the target system can be tested with Tcooperation and
Tfailure,Rant and some normalized performance measure g like the average return
or some domain specific value to evaluate the following measures:

Cooperation performance which estimates ETcooperation [g] to assess the abil-
ity of a MAS to collaborate with new agents. Note that unlike in the
best-case, protagonists from different training processes than the target
system are used as π̂ant for testing.

Worst case performance which estimates minc∈Tcooperation∪(⋃χ Tfailure,χ){g} to
assess the resilience of a MAS against a variety of partial changes.

With Tcooperation and Tfailure,Rant , we can compare the cooperation and worst-
case performance of different MARL approaches in a fair way because the
trained MAS are evaluated (but not trained) against the same set of test
agents. Hence, the agents of a MAS can no longer rely on the assumption of
only meeting fellow agents from training during evaluation.
We evaluated RADAR in a predator-prey domain and the simulated CPPS
shown in Figure 5.2c. The CPPS results are shown in Figure 5.4 and demon-
strate the effectiveness of RADAR in terms of cooperation and worst-case
performance, where all approaches are evaluated with the same agent-based
test suites. Ablation studies show the flexibility and superiority of RADAR
compared to variants with fixed Rant and without VDN for adversarial value
decomposition [47].

(a) cooperation performance (b) worst-case performance

Figure 5.4.: Cooperation performance and worst-case performance of RADAR
and state-of-the-art MARL for CPPS[16]. Results taken from [47].
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6. Further Topics

The tradeoff between complexity and
optimality is very common in real
life.

Modeling Bounded Rationality
Ariel Rubinstein

6.1. Resource Efficiency

The increasing complexity of potential AI domains often leads to more complex
algorithms which require tremendous effort on tuning and execution [24]. Such
developments can limit actual progress in the long run due to the physical
limits regarding compute and memory, especially in low resource environments.
Furthermore, increasing demand for computational and memory resources has
potential negative societal impacts, e.g., regarding energy consumption [88].
We focus on model-based decision making in particular, where Monte Carlo
planning (MCP) seems promising to solve complex problems via statistical
sampling [27, 71, 86]. MCTS represents the current state-of-the-art in MCP,
which constructs sparse closed-loop trees over (belief) states and actions for
efficient policy search. Despite avoiding exhaustive search, the closed-loop
trees can still become arbitrarily large for highly complex domains with large
branching factors, e.g., due to large (joint) action spaces. In environments with
highly restricted memory resources, MCTS could become either infeasible or
perform very poorly – regardless of the provided computation time.
As mentioned in Section 4.1, open-loop planning can significantly reduce the
branching factor by discarding (belief) state information and merely focusing
on action sequences [29, 44, 86]. Especially in low resource environments, open-
loop planning seems promising to find good solutions in a much more scalable
way than closed-loop planning. Focusing on games with N = 11, we propose
memory bounded open-loop MCP algorithms using stacks of Thompson Sam-
pling bandits. Each bandit represents a decision rule for a particular time step
t regardless of the actual simulated state, observation, or preceding actions,
in order to generate and evaluate open-loop plans [48, 50]. These bandits are
updated recursively according to the corresponding returns Gt. The stack size
1Such games are known as games against nature or POMDPs, where a single decision making
agent faces the environment as "stationary opponent" [43].
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can be either fixed or dynamically adapted, depending on the convergence of
bandits.
Our stack-based algorithms are highly efficient w.r.t. compute and memory
being competitive against tree-based (open- and closed-loop) MCP in domains
with large action spaces and significantly outperform tree-based MCP when
memory resources are restricted. Our approaches can be used in hybrid meth-
ods like STEP from Section 4.1 to enable resource efficient planning supported
by emergent policy and value functions.

6.2. State Uncertainty

Decentralized partially observable Markov decision processes (Dec-POMDP)
are more general variants of cooperative games, where the observation function
Ω is stochastic to model noisy sensors [25, 41]. Dec-POMDPs often exhibit high
degrees of state uncertainty, which pose a major challenge for decentralized
coordination [42]. State-based CTDE tackles Dec-POMDPs by exploiting state
information to learn a centralized value function in order to derive coordinated
local policies [15, 53, 60]. Due to its empirical effectiveness in the StarCraft
Multi-Agent Challenge (SMAC) as the current de facto standard for MARL
evaluation [63], state-based CTDE has become very popular and is widely
considered an adequate approach to general Dec-POMDPs [15, 36, 37].
However, state-based CTDE is generally insufficient to learn proper value func-
tions under state uncertainty, since all agents make decisions on a completely
different basis, i.e., individual histories of noisy observations and actions. Fur-
thermore, SMAC has very limited state uncertainty due to deterministic obser-
vations and low variance in initial states, being insufficient for assessing prac-
ticability of MARL. Thus, merely relying on state-based CTDE and SMAC
in MARL research can be a pitfall in practice as state uncertainty is largely
neglected – despite being an important aspect in Dec-POMDPs.
To this end, we propose Attention-based Embeddings of Recurrence In multi-
Agent Learning (AERIAL), which replaces the true state with a learned repre-
sentation of multi-agent recurrence as illustrated in Figure 6.1 [52]. By lever-
aging the memory representations of all agents’ recurrent functions, AERIAL
considers more accurate closed-loop information about decentralized agent de-
cisions than state-based CTDE to learn proper value functions under state
uncertainty [9, 20, 21].
We also introduce MessySMAC which extends SMAC with observation stochas-
ticity w.r.t. Ω, where all measured values of observation zt,i are negated with
a probability of φ ∈ [0, 1), and initialization stochasticity w.r.t. b0, where K
random steps are initially performed before officially starting an episode [52].
MessySMAC represents a more general Dec-POMDP benchmark than SMAC,
enabling systematic evaluation under different configurations of state uncer-
tainty according to φ and K. Figure 6.2 shows the PCA visualization of joint
observations in two SMAC and MessySMAC maps within the first 5 steps of
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Agent NAgent 1MLP

RNN

MLP

Transformer

...

Figure 6.1.: Illustration of the AERIAL setup. Left: Recurrent agent net-
work structure with memory representations ht−1,i and ht,i. Right:
Value function factorization via factorization operator Ψ using the
joint memory representation ht = 〈ht,i〉i∈D of all agents’ RNNs
instead of true states st. All memory representations ht,i are de-
tached from the computation graph to avoid additional differenti-
ation (indicated by the dashed gray arrows) and passed through a
simplified transformer before being used by Ψ for value function
factorization. Image taken from [52].

1,000 episodes, indicating higher state uncertainty in MessySMAC maps.
Our experiments demonstrate that AERIAL is competitive against state-based
CTDE in SMAC and superior in MessySMAC, confirming the effectiveness of
exploiting multi-agent recurrence instead of true states in centralized training.
Considering state uncertainty in MARL is important to avoid emergence of
uncoordinated behavior and to improve resilience as the real world is generally
messy and only observable through noisy sensors [25, 41, 71].

6.3. Non-Cooperative Emergence

In Chapter 3, we studied how emergent cooperation can be incentivized in
general-sum games using local communication. In Chapter 4, we demonstrated
how coordination can be improved by exploiting emergent properties in CTDE.
In both chapters, the resulting emergent behavior improves social welfare over
the course of training. In the real world, not all emergent phenomena im-
prove social welfare though. Traffic jams or panic buying are examples of
non-cooperative emergence, where individuals act greedily regardless of others
leading to worse social welfare than is possible.
In our study, we conducted predator-prey simulations of N learning agents
representing fishes as prey in a general-sum game along with a shark as preda-
tor, which greedily hunts fishes within close vicinity [18]. The goal of all agents
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Figure 6.2.: Left: Screenshot of two SMAC maps. Middle: PCA visualization
of the joint observations in original SMAC within the first 5 steps
of 1,000 episodes using a random policy with K = 0 initial ran-
dom steps. Right: Analogous PCA visualization for MessySMAC
with K = 10 initial random steps. For visual comparability, the
observations are deterministic here. Image taken from [52].

is to survive regardless of others which is individually rewarded with +1 for
each time step. However, an agent gets penalized with −1000 and removed
from the game when being caught by the shark.
As expected from nature, the agents learned to form swarms – despite not
being explicitly rewarded to do so – effectively distracting the shark, which
consequently focused on hunting "outlier" agents instead. At first glance, one
might assume the resulting swarm to be an emergent cooperative structure.
However, further analysis revealed that swarm forming policies are rather in-
efficient w.r.t. the expected agent life time, which is a surprising finding given
that agents are actually rewarded for surviving [18]. We found that if all agents
simply escaped from the shark independently of each other, their expected life
time would increase significantly. However if a swarm emerges, then indepen-
dent escaping agents tend to be caught first, causing the swarm to occasionally
"sacrifice" some agents by isolating them as bait for the shark. Therefore, the
whole swarm can be hypothesized to be an emergent selfish but stable struc-
ture which has a long expected life time "as a whole" while its individuals are
rather short lived. Extending such analyses to more domains could provide
valuable insights to devise better MARL algorithms that consider emergence
and resilience.
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7. Conclusion

Fortunately, humans do have
foresight and use it to speed up what
would otherwise be a blind process of
evolution.

The Evolution of Cooperation
Robert Axelrod

7.1. Summary

Due to the rapid progress in MARL, artificial agents are going to become more
and more omnipresent in our everyday life, influencing our world through their
decisions like natural MAS already do [14, 17]. In this thesis, we investigated
the explicit consideration of emergence and resilience in MARL and presented
methods that overcome common limitations of the state-of-the-art regarding
various aspects relevant to the real world. Our work is based on common MAS
settings and paradigms as described in Chapter 2.
We first studied how cooperation can emerge in general-sum games from local
interaction. Agents are able to incentivize each other to adopt more coopera-
tive policies via locally exchanged rewards using a two-phase communication
protocol. To avoid destabilization of cooperation by social pressure, agents
need the ability to reciprocate via adequate responses. The locality of infor-
mation and communication naturally offers some degree of resilience against
external disturbances like random protocol defections and communication fail-
ures, which are common challenges in the real world [79].
While the emergence of cooperation in general-sum games is desirable for po-
tential future multi-agent scenarios, many distributed real-world applications
can be straightforwardly modeled as cooperative games, where all agents share
a common goal and are trainable via CTDE. Agents of a cooperative game need
to make individual decisions to not just achieve emergent cooperation but to
improve overall coordination. Despite state-of-the-art CTDE commonly using
states and joint actions to learn coordinated policies, we hypothesized that
emergent phenomena are not sufficiently considered during training therefore
limiting performance and scalability. To this end, we proposed MARL ap-
proaches that explicitly consider emergence in form of globally tracked models
for prediction and dynamic team structures for hierarchization to overcome
these limitations.

29



7. Conclusion

MAS are supposed to withstand internal disturbances or partial changes, where
agents themselves can unexpectedly alter their policies due to updates, manip-
ulation, or flaws. Even if the underlying setting is purely cooperative, a MAS
should always be prepared for partial changes and exhibit resilience similar to
natural MAS and classic distributed systems in order to prevent catastrophic
failure. We therefore reformulated originally cooperative games as zero-sum
games of agent teams and devised antagonist-based methods, where all agents
can potentially change their behavior adversarially, to learn resilient policies.
We also proposed testing methods to evaluate resilience w.r.t. partial changes
based on dedicated agent test sets.
At last, we briefly presented further topics that are also relevant to building
artificial MAS. We addressed the problem of resource efficiency, which is im-
portant regarding low resource environments and societal impact, by proposing
memory bounded open-loop MCP for effective decision making in a computa-
tionally and memory efficient way. As state uncertainty is largely neglected in
MARL research, we introduced a configurable benchmark for adequate evalu-
ation as well as a recurrence-based approach to MARL which implicitly con-
siders state uncertainty to advance MARL towards more general settings. We
also investigated non-cooperative emergence in form of selfish swarms, where
individual agents are occasionally "sacrificed" by the swarm to ensure its sur-
vival. A better understanding of such phenomena could be useful to further
improve algorithms considering emergence and resilience.
Returning to our research questions formulated in Section 1.2, we can now give
the following answers:

(Q1) Can cooperation emerge in MARL from local interaction? In
Chapter 3, we proposed a peer incentivization approach based on mu-
tual acknowledgments, where self-interested agents are able to exchange
rewards and penalties. Agent interaction is completely local due to
partial observability and neighborhood communication therefore offering
scalability and better applicability to real-world scenarios. Compared to
prior methods, which mostly assume global information, our approach
is able to achieve superior cooperation, emerging from local interaction.

(Q2) How to maintain emergent cooperation in MARL? Our mutual ac-
knowledgment approach is able to stably maintain cooperation even un-
der social pressure due to our penalization mechanism which enables
reciprocity. In Chapter 3, we additionally presented a resilience evalua-
tion regarding external disturbances like random protocol defections and
communication failures. Our approach naturally offers some degree of
resilience due to the locality of information and communication as it is
able to maintain its superior cooperation in large and partially observable
domains in contrast to prior methods that assume global information.

(Q3) How to consider emergence to improve performance in MARL?
State-of-the-art CTDE is currently limited to domains with a handful of
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7.1. Summary

agents despite using global information like states and joint actions to
learn coordinated policies. In Chapter 4, we hypothesized that explicit
consideration of emergence beyond mere states and joint actions is
needed to improve overall coordination in large MAS. We first presented
a model-based hybrid approach, integrating learned policy and value
functions into decentralized open-loop planning to efficiently predict
emergent effects for agent-wise policy learning. We then presented a
model-free approach which is able to exploit the emergence of dynamic
team structures to form an optimized hierarchy for scalable value
function factorization. Both approaches are able to outperform state-
of-the-art CTDE approaches that do not explicitly consider emergence,
especially in large-scale domains with many agents.

(Q4) How to improve resilience in MARL against partial changes?
Despite resilience being a main motivation for artificial MAS for
decades, many works on MARL focus on optimizing the best-case
performance under idealized conditions, assuming no partial changes at
all. In Chapter 5, we proposed two antagonist-based methods, where all
agents can change their behavior, i.e., through random replacement by
adversarial counterparts, during training to learn resilient policies. The
resulting MAS outperform idealized MARL in the presence of partial
changes, indicating that antagonist-based training can produce resilient
MAS that are able to survive internal disturbances.

(Q5) How to evaluate resilience in MARL against partial changes?
Since many works on MARL assume idealized conditions, the evaluation
of a MAS is typically conducted with the exact same agents as seen
during training. In addition to our antagonist-based training methods,
we introduce testing methods in Chapter 5 to evaluate resilience w.r.t.
partial changes based on dedicated agent test sets. These test sets can
be used for cross-validation at the end of training or as pretrained test
suites to evaluate the target system during training. By using the same
set of test suites or agents to evaluate different MARL approaches,
we can ensure a fair comparison w.r.t. cooperation and worst-case
performance regarding any kind of partial change.

(Q6) What are further relevant topics? Beside emergence and resilience,
there are many other topics that are also relevant to building artificial
MAS. In Chapter 6, we briefly addressed resource efficiency, state uncer-
tainty, and non-cooperative emergence. Resource efficiency is important
regarding low resource environments and societal impact. Considering
state uncertainty is important to avoid emergence of uncoordinated be-
havior and to improve resilience in a messy world that is only observable
through noisy sensors. Studying the emergence of selfish structures in
large MAS like swarms could provide a starting point for devising better
algorithms considering emergence and resilience.
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7. Conclusion

Based on the findings of our work and the provided answers to the research
questions, we conclude that the explicit consideration of emergence and re-
silience in MARL is important to build artificial MAS that are able to solve
complex tasks while withstanding disturbances thus confirming our central hy-
pothesis 1.1. As our world is steadily expanding towards more artificial agents
and MAS that coexist with natural MAS, considering emergence and resilience
is going to become an increasingly important task.

7.2. Outlook

In this thesis, we assumed all agents to be purely rational. In the real world,
where AI systems are supposed to coexist with humans and other living organ-
isms, pure rationality cannot always be assumed (from an artificial agent’s per-
spective) though [62]. Modeling non-rational or bounded rational agents can
help MARL to better align with human behavior and preferences to improve
safety, trustworthiness, and acceptance in wide areas. Assuming bounded ra-
tionality in agents could also improve resilient MARL, where disturbances can
occur due to irrational actions, e.g., human intervention or mistakes, without
any adversarial intention.
Social abstraction may be useful to reduce complexity in large MAS with many
agents. In Section 3.2 and 4.2, we found that locality and optimized group-
ing of agents can improve performance and resilience in MAS. However, we
only assumed a single level of abstraction, where agents are merely part of
some sub-team or neighborhood without further structure or hierarchization.
In real life, humans and animals can have multiple levels of abstractions to
classify others, e.g., as close relatives, friends, rivals, or completely unrelated
individuals. These abstractions enable efficient prioritization of actions with-
out needing to know each opponent in full detail. Social abstraction in MARL
could improve cooperation and resilience in large MAS by integrating emer-
gent social structures, e.g., to cooperate based on social relationships or to
adversarially attack important relationships in order to evaluate resilience.
As mentioned in Section 6.1, the complexity of algorithms w.r.t. hyperparam-
eters and mechanisms tends to increase as AI advances towards more complex
domains. Increasing complexity can be prohibitive for actual progress because
more effort is required for implementation, execution, tuning, and understand-
ing, which has potential negative societal impacts. Therefore, addressing com-
plexity with simplicity is a more sensible goal than vice versa. In our research,
we put some effort in introducing rather simple methods with very few addi-
tional hyperparameters that are able to overcome limitations of more complex
state-of-the-art methods. However, future work should actually aim to reduce
the number of hyperparameters instead of introducing new ones [24].
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approach based on trust metrics supervised by Phan and Altmann. Ritz sup-
ported the robustness evaluation. Altmann, Ritz, and Belzner discussed and
reviewed the results. Linnhoff-Popien consulted the process and reviewed the
results. This publication is based on Sommer’s thesis to achieve the degree
Master of Science.
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Main focus of Chapter 3 regarding the research questions Q1 and Q2 from
Section 1.2.
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Phan conceived the original concepts and conducted the empirical analysis.
Ritz and Belzner discussed the concepts and results, and provided support
on the sub-team evaluation. Altmann and Gabor discussed and reviewed the
results. Linnhoff-Popien consulted the process and reviewed the results.
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Main focus of Chapter 4 regarding the research question Q3 from Section 1.2.

49

https://proceedings.neurips.cc/paper/2021/hash/c97e7a5153badb6576d8939469f58336-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c97e7a5153badb6576d8939469f58336-Abstract.html
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Cooperative Multi-Agent Systems". In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages
1055–1063. International Foundation for Autonomous Agents and Multiagent
Systems, 2020.
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URL: https://ifaamas.org/Proceedings/aamas2020/pdfs/p1055.pdf

Contributions

1. Antagonist-based training and test scheme.

2. Resilience evaluation based on agent cross-validation.
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Phan conceived the original concepts and conducted the empirical analysis.
Gabor discussed the concepts and results, and provided feedback on related
work. Sedlmeier and Ritz discussed and reviewed the results, and supported
the setup implementation. Kempter, Klein, Sauer, Schmid, Wieghardt, and
Zeller reviewed and discussed the concepts, and provided feedback on the
setup. Linnhoff-Popien consulted the process and reviewed the results.
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Main focus of Chapter 5 regarding the research questions Q4 and Q5 from
Section 1.2.
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A.6. Resilient Multi-Agent Reinforcement
Learning with Adversarial Value
Decomposition

Publication

Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian
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AAAI Conference on Artificial Intelligence (AAAI), volume 35(13), pages
11308–11316, 2021.
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URL: https://ojs.aaai.org/index.php/AAAI/article/view/17348

Contributions

1. Antagonist-based training with variable sized antagonist teams.

2. Resilience evaluation based on cooperation and worst-case performance
using dedicated test sets of agents.

Credit

Phan conceived the original concepts and conducted the empirical analysis.
Belzner and Gabor discussed the concepts and results, and provided feedback
on related work. Sedlmeier supported the setup implementation. Ritz reviewed
the results. Linnhoff-Popien consulted the process and reviewed the results.
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Main focus of Chapter 5 regarding the research questions Q4 and Q5 from
Section 1.2.

51

https://doi.org/10.1609/aaai.v35i13.17348
https://ojs.aaai.org/index.php/AAAI/article/view/17348


A.7. Memory Bounded Open-Loop Planning in
Large POMDPs using Thompson
Sampling

Publication
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the AAAI Conference on Artificial Intelligence (AAAI), volume 33(01), pages
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DOI: https://doi.org/10.1609/aaai.v33i01.33017941
URL: https://ojs.aaai.org/index.php/AAAI/article/view/4794

Contributions

1. Memory bounded open-loop planning with fixed Thompson Sampling
stacks.

2. Memory efficiency evaluation of open- and closed-loop Monte Carlo plan-
ning algorithms.

Credit

Phan conceived the original concepts and conducted the empirical analysis.
Belzner co-conceived the concepts and provided feedback on implementing
Thompson Sampling. Kiermeier, Friedrich, and Schmid discussed and reviewed
the results. Linnhoff-Popien consulted the process and reviewed the results.

Purpose

Main focus of Chapter 6 regarding the research question Q6 from Section 1.2.
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A.8. Adaptive Thompson Sampling Stacks for
Memory Bounded Open-Loop Planning

Publication

Thomy Phan, Thomas Gabor, Robert Müller, Christoph Roch, and Claudia
Linnhoff-Popien. "Adaptive Thompson Sampling Stacks for Memory Bounded
Open-Loop Planning". In Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 5607–5613. International Joint
Conferences on Artificial Intelligence Organization, 2019.

DOI: https://doi.org/10.24963/ijcai.2019/778
URL: https://www.ijcai.org/proceedings/2019/778

Contributions

Memory bounded open-loop planning with adaptive Thompson Sampling
stacks based on bandit convergence.

Credit

Phan conceived the original concepts and conducted the empirical analysis.
Gabor, Müller, and Roch discussed the concepts and results. Linnhoff-Popien
consulted the process and reviewed the results.
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Main focus of Chapter 6 regarding the research question Q6 from Section 1.2.
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A.9. Attention-Based Recurrence for
Multi-Agent Reinforcement Learning
under Stochastic Partial Observability

Publication

Thomy Phan, Fabian Ritz, Philipp Altmann, Maximilian Zorn Zorn, Jonas
Nüßlein, Michael Kölle, Thomas Gabor, and Claudia Linnhoff-Popien.
"Attention-Based Recurrence for Multi-Agent Reinforcement Learning under
Stochastic Partial Observability". In Proceedings of the 40th International
Conference on Machine Learning (ICML). PMLR, 2023. To appear.

Contributions

1. Value function factorization scheme, which exploits the recurrence of all
agents using self-attention instead of true states.

2. General and configurable Dec-POMDP benchmark, extending StarCraft
Multi-Agent Challenge with stochastic observations and higher variance
in initial states.

Credit

Phan conceived the original concepts and conducted the empirical analysis.
Ritz, Altmann, Zorn, Nüßlein, Kölle, and Gabor discussed the concepts and
results. Linnhoff-Popien consulted the process and reviewed the results.

Purpose

Main focus of Chapter 6 regarding the research question Q6 from Section 1.2.

Preprint attached below.
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Attention-Based Recurrence for Multi-Agent Reinforcement Learning under
Stochastic Partial Observability

Thomy Phan 1 † Fabian Ritz 2 Philipp Altmann 2 Maximilian Zorn 2 Jonas Nüßlein 2 Michael Kölle 2

Thomas Gabor 2 Claudia Linnhoff-Popien 2

Abstract
Stochastic partial observability poses a major
challenge for decentralized coordination in multi-
agent reinforcement learning but is largely ne-
glected in state-of-the-art research due to a strong
focus on state-based centralized training for de-
centralized execution (CTDE) and benchmarks
that lack sufficient stochasticity like StarCraft
Multi-Agent Challenge (SMAC). In this paper, we
propose Attention-based Embeddings of Recur-
rence In multi-Agent Learning (AERIAL) to ap-
proximate value functions under stochastic partial
observability. AERIAL replaces the true state
with a learned representation of multi-agent re-
currence, considering more accurate information
about decentralized agent decisions than state-
based CTDE. We then introduce MessySMAC, a
modified version of SMAC with stochastic ob-
servations and higher variance in initial states, to
provide a more general and configurable bench-
mark regarding stochastic partial observability.
We evaluate AERIAL in Dec-Tiger as well as in
a variety of SMAC and MessySMAC maps, and
compare the results with state-based CTDE. Fur-
thermore, we evaluate the robustness of AERIAL
and state-based CTDE against various stochastic-
ity configurations in MessySMAC.

1. Introduction
A wide range of real-world applications like fleet manage-
ment, industry 4.0, or communication networks can be for-
mulated as decentralized partially observable Markov de-
cision process (Dec-POMDP) representing a cooperative
multi-agent system (MAS), where multiple agents have to
coordinate to achieve a common goal (Oliehoek & Amato,

1University of Southern California, USA. †Work done at
LMU Munich 2LMU Munich, Germany. This paper is an ex-
tension of (Phan et al., 2023). Correspondence to: Thomy Phan
<thomy.phan@ifi.lmu.de>.

2016). Stochastic partial observability poses a major chal-
lenge for decentralized coordination in Dec-POMDPs due to
noisy sensors and potentially high variance in initial states
which are common in the real world (Kaelbling et al., 1998;
Oliehoek & Amato, 2016).

Multi-agent reinforcement learning (MARL) is a general
approach to tackle Dec-POMDPs with remarkable progress
in recent years (Wang et al., 2021; Wen et al., 2022). State-
of-the-art MARL is based on centralized training for de-
centralized execution (CTDE), where training takes place
in a laboratory or a simulator with access to global informa-
tion (Lowe et al., 2017; Foerster et al., 2018). For example,
state-based CTDE exploits true state information to learn
a centralized value function in order to derive coordinated
policies for decentralized decision making (Rashid et al.,
2018; Yu et al., 2022). Due to its effectiveness in the Star-
Craft Multi-Agent Challenge (SMAC) as the current de facto
standard for MARL evaluation, state-based CTDE has be-
come very popular and is widely considered an adequate
approach to general Dec-POMDPs for more than half a
decade, leading to the development of many increasingly
complex algorithms (Lyu et al., 2021; 2022).

However, merely relying on state-based CTDE and SMAC
in MARL research can be a pitfall in practice as stochastic
partial observability is largely neglected – despite being an
important aspect in Dec-POMDPs (Lyu et al., 2022):

From an algorithm perspective, purely state-based value
functions are insufficient to evaluate and adapt multi-agent
behavior, since all agents make decisions on a completely
different basis, i.e., individual histories of noisy observa-
tions and actions. True Dec-POMDP value functions con-
sider more accurate closed-loop information about decen-
tralized agent decisions though (Oliehoek et al., 2008). Fur-
thermore, the optimal state-based value function represents
an upper-bound of the true optimal Dec-POMDP value func-
tion thus state-based CTDE can result in overly optimistic
behavior in general Dec-POMDPs (Lyu et al., 2022).

From a benchmark perspective, SMAC has very limited
stochastic partial observability due to deterministic obser-
vations and low variance in initial states (Ellis et al., 2022).

Thomy Phan, Fabian Ritz, Philipp Altmann, Maximilian Zorn, Jonas Nüßlein,
Michael Kölle, Thomas Gabor, and Claudia Linnhoff-Popien. "Attention-
Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic
Partial Observability". In Proceedings of the 40th International Conference on
Machine Learning (ICML). PMLR, 2023. To appear.
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Therefore, SMAC scenarios only represent simplified spe-
cial cases rather than general Dec-POMDP challenges, be-
ing insufficient for assessing practicability of MARL.

In this paper, we propose Attention-based Embeddings of Re-
currence In multi-Agent Learning (AERIAL) to approximate
value functions under agent-wise stochastic partial observ-
ability. AERIAL replaces the true state with a learned repre-
sentation of multi-agent recurrence, considering more accu-
rate closed-loop information about decentralized agent de-
cisions than state-based CTDE. We then introduce MessyS-
MAC, a modified version of SMAC with stochastic observa-
tions and higher variance in initial states, to provide a more
general and configurable Dec-POMDP benchmark for more
adequate evaluation. Our contributions are as follows:

• We formulate and discuss the concepts of AERIAL
w.r.t. stochastic partial observability in Dec-POMDPs.

• We introduce MessySMAC to enable systematic evalu-
ation under various stochasticity configurations.

• We evaluate AERIAL in Dec-Tiger, a small and tradi-
tional Dec-POMDP benchmark, as well as in a variety
of original SMAC and MessySMAC maps, and com-
pare the results with state-based CTDE. Our results
show that AERIAL achieves competitive performance
in original SMAC, and superior performance in Dec-
Tiger and MessySMAC. Furthermore, we evaluate the
robustness of AERIAL and state-based CTDE against
various stochasticity configurations in MessySMAC.

2. Background
2.1. Decentralized POMDPs

We formulate cooperative MAS problems as Dec-POMDP
M = 〈D,S,A, T ,R,Z,Ω, b0〉, whereD = {1, ..., N} is a
set of agents i, S is a set of (true) states st at time step t,A =
〈Ai〉i∈D is the set of joint actions at = 〈at,1, ..., at,N 〉 =
〈at,i〉i∈D, T (st+1|st,at) is the state transition probability,
rt = R(st,at) ∈ R is the shared reward, Z is a set of local
observations zt,i for each agent i ∈ D, Ω(zt+1|at, st+1) is
the probability of joint observation zt+1 = 〈zt+1,i〉i∈D ∈
ZN , and b0 is the probability distribution over initial states
s0 (Oliehoek & Amato, 2016). Each agent i maintains a
local history τt,i ∈ (Z × Ai)t and τ t = 〈τt,i〉i∈D is the
joint history. A belief state b(st|τ t) is a sufficient statistic
for joint history τ t and defines a probability distribution
over true states st, updatable by Bayes’ theorem (Kaelbling
et al., 1998). Joint quantities are written in bold face.

Stochastic partial observability inM is given by observation
and initialization stochasticity w.r.t. Ω and b0 respectively.

A joint policy π = 〈πi〉i∈D with decentralized or local poli-
cies πi defines a deterministic mapping from joint histories

to joint actions π(τ t) = 〈πi(τt,i)〉i∈D ∈ A. The return is
defined by Gt =

∑T−1
c=0 γ

crt+c, where T is the horizon and
γ ∈ [0, 1] is the discount factor. π can be evaluated with
a value function Qπ(τ t,at) = Eb0,T ,Ω[Gt|τ t,at,π]. The
goal is to find an optimal joint policy π∗ with optimal value
function Qπ∗

= Q∗ as defined in the next section.

2.2. Optimal Value Functions and Policies

Fully Observable MAS In MDP-like settings with a cen-
tralized controller, the optimal value function Q∗MDP is de-
fined by (Watkins & Dayan, 1992; Boutilier, 1996):

Q∗MDP(st,at) = rt + γ
∑

st+1∈S
X (1)

where X = T (st+1|st,at)maxat+1∈AQ
∗
MDP(st+1,at+1).

Due to full observability, Q∗MDP does not depend on τ t but
on st. Thus, decentralized observations zt,i and probabil-
ities according to Ω and b0 are not considered at all. An
optimal (joint) policy π∗MDP of the centralized controller sim-
ply maximizes Q∗MDP for all st (Watkins & Dayan, 1992):

π∗MDP = argmaxπMDP

∑

st∈S
Q∗MDP(st,πMDP(st)) (2)

Partially Observable MAS In general Dec-POMDPs,
where true states are not fully observable and only decentral-
ized controllers or agents exist, the optimal value function
Q∗ is defined by (Oliehoek et al., 2008):

Q∗(τ t,at) =
∑

st∈S
b(st|τ t)


rt + γ

∑

st+1∈S

∑

zt+1∈ZN

X




(3)

where X = T (st+1|st,at)Ω(zt+1|at, st+1)Q∗(τ t+1,
π∗(τ t+1)) with τ t+1 = 〈τ t,at, zt+1〉.
An optimal joint policy π∗ for decentralized execution maxi-
mizes the expectation ofQ∗ for all joint histories τ t (Emery-
Montemerlo et al., 2004; Oliehoek et al., 2008):

π∗ = argmaxπ

T−1∑

t=0

∑

τ t∈(ZN×A)t

Cπ(τ t)P
π(τ t|b0)Q∗(·)

(4)
where Q∗(·) = Q∗(τ t,π(τ t)), indicator Cπ(τ t) filters out
joint histories τ t that are inconsistent with π, and prob-
ability Pπ(τ t|b0) represents the recurrence of all agents
considering agent-wise stochastic partial observability w.r.t.
decentralization of π and τ t (Oliehoek et al., 2008):

Pπ(τ t|b0) = P(z0|b0)
∏t

c=1
P(zc|τ c−1,π)

= P(z0|b0)
∏t

c=1

∑

sc∈S

∑

sc−1∈S
T (·)Ω(·) (5)
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where T (·) = T (sc|sc−1,π(τ c−1)) and Ω(·) =
Ω(zc|π(τ c−1), sc).

Since all agents act according to their local history τt,i
without access to the complete joint history τ t, recurrence
Pπ(τ t|b0) depends on more accurate closed-loop informa-
tion than just true states st, i.e., all previous observations,
actions, and probabilities according to b0, T , and Ω.

Q∗MDP is proven to represent an upper bound of Q∗

(Oliehoek et al., 2008). Thus, naively deriving local policies
πi from Q∗MDP instead of Q∗ can result in overly optimistic
behavior as we will show in Section 4.1 and 6.

2.3. Multi-Agent Reinforcement Learning

Finding an optimal joint policy π∗ via exhaustive compu-
tation of Q∗ according to Eq. 3-5 is intractable in prac-
tice (Nair et al., 2003; Szer et al., 2005). MARL offers
a scalable way to learn Q∗ and π∗ via function approxi-
mation, e.g., using CTDE, where training takes place in
a laboratory or a simulator with access to global informa-
tion (Lowe et al., 2017; Foerster et al., 2018). We focus
on value-based MARL to learn a centralized value func-
tion Qtot ≈ Q∗, which can be factorized into local utility
functions 〈Qi〉i∈D for decentralized decision making via
πi(τt,i) = argmaxat,iQi(τt,i, at,i). For that, a factorization
operator Ψ is used (Phan et al., 2021):

Qtot(τ t,at) = Ψ(Q1(τt,1, at,1), ..., QN (τt,N , at,N )) (6)

In practice, Ψ is realized with deep neural networks, such
that 〈Qi〉i∈D can be learned end-to-end via backpropagation
by minimizing the mean squared temporal difference (TD)
error (Rashid et al., 2018; Sunehag et al., 2018). A factor-
ization operator Ψ is decentralizable when satisfying the
IGM (Individual-Global-Max) such that (Son et al., 2019):

argmaxat
Qtot(τ t,at) =




argmaxat,1Q1(τt,1, at,1)
...

argmaxat,NQN (τt,N , at,N )




(7)

There exists a variety of factorization operators Ψ which
satisfy Eq. 7 using monotonicity like QMIX (Rashid et al.,
2018), nonlinear transformation like QPLEX (Wang et al.,
2021), or loss weighting like CW- and OW-QMIX (Rashid
et al., 2020). Most approaches use state-based CTDE to
learn Q∗MDP according to Eq. 1 instead of Q∗ (Eq. 3-5).

2.4. Recurrent Reinforcement Learning

In partially observable settings, the policy πi of agent i
conditions on the history τt,i of past observations and ac-
tions (Kaelbling et al., 1998; Oliehoek & Amato, 2016). In

practice, recurrent neural networks (RNNs) like LSTMs or
GRUs are used to learn a compact representation ht,i of
τt,i and πi known as hidden state or memory representa-
tion1, which implicitly encodes the individual recurrence
of agent i, i.e., the distribution Pπi

i over τt,i (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014; Hu & Foerster, 2019):

Pπi
i (τt,i|b0) = Pi(z0,i|b0)

∏t

c=1
Pi(zc,i|τc−1,i, πi) (8)

RNNs are commonly used for partially observable problems
and have been empirically shown to be more effective than
using raw observations zt,i or histories τt,i (Hausknecht &
Stone, 2015; Samvelyan et al., 2019; Vinyals et al., 2019).

3. Related Work
Multi-Agent Reinforcement Learning In recent years,
MARL has achieved remarkable progress in challenging
domains (Gupta et al., 2017; Vinyals et al., 2019). State-of-
the-art MARL is based on CTDE to learn a centralized value
function Qtot for actor-critic learning (Lowe et al., 2017;
Foerster et al., 2018; Yu et al., 2022) or factorization (Rashid
et al., 2018; 2020; Wang et al., 2021). However, the majority
of works assumes a simplified Dec-POMDP setting, where
Ω is deterministic, and uses true states to approximateQ∗MDP
according to Eq. 1 instead of Q∗ (Eq. 3-5). Thus, state-
based CTDE is possibly less effective in more general Dec-
POMDP settings. Our approach addresses stochastic partial
observability with a learned representation of multi-agent
recurrence Pπ(τ t|b0) according to Eq. 5 instead of st.

Weaknesses of State-Based CTDE Recent works investi-
gated potential weaknesses of state-based CTDE for multi-
agent actor-critic methods regarding bias and variance (Lyu
et al., 2021; 2022). The experimental results show that
state-based CTDE can surprisingly fail in very simple Dec-
POMDP benchmarks that exhibit more stochasticity than
SMAC. While these studies can be considered an impor-
tant step towards general Dec-POMDPs, there is neither
an approach which adequately addresses stochastic partial
observability nor a benchmark to systematically evaluate
such an approach yet. In this work, we focus on value-based
MARL, where learning an accurate value function is impor-
tant for meaningful factorization, and propose an attention-
based recurrence approach to approximate value functions
under stochastic partial observability. We also introduce
a modified SMAC benchmark, which enables systematic
evaluation under various stochasticity configurations.

Attention-Based CTDE Attention has been used in
CTDE to process information of potentially variable length

1In this paper, we use the term memory representation to avoid
confusion with the state terminology of the (Dec-)POMDP litera-
ture (Kaelbling et al., 1998; Oliehoek & Amato, 2016).
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N , where joint observations zt, joint actions at, or local
utilities 〈Qi〉i∈D are weighted and aggregated to provide a
meaningful representation for value function approximation
(Iqbal & Sha, 2019; Wang et al., 2021; Iqbal et al., 2021;
Wen et al., 2022; Khan et al., 2022). Most works focus
on Markov games without observation stochasticity, which
are special cases of the Dec-POMDP setting. In this work,
we focus on stochastic partial observability and apply self-
attention to the memory representations ht,i of all agents’
RNNs instead of the raw observations zt,i to approximate
Q∗ for general Dec-POMDPs according to Eq. 3-5.

4. AERIAL
4.1. Limitation of State-Based CTDE

Most state-of-the-art works assume a simplified Dec-
POMDP setting, where Ω is deterministic, and approximate
Q∗MDP according to Eq. 1 instead of Q∗ (Eq. 3-5).

If there are only deterministic observations and initial states
s0 such that b0(s0) = 1 and b0(s′) = 0 if s′ 6= s0, then
multi-agent recurrence Pπ(τ t|b0) as defined in Eq. 5 would
only depend on state transition probabilities T (st+1|st,at)
which are purely state-based, ignoring decentralization of
agents and observations (Oliehoek et al., 2008). In such
scenarios, stochastic partial observability is very limited,
especially if all πi are deterministic. We hypothesize that
this is one reason for the empirical success of state-based
CTDE in original SMAC, whose scenarios seemingly have
these simplifying properties (Ellis et al., 2022).

In the following, we regard a small example, where state-
based CTDE can fail at finding an optimal joint policy π∗.

Example Dec-Tiger is a traditional and simple Dec-
POMDP benchmark with N = 2 agents facing two doors
(Nair et al., 2003). A tiger is randomly placed behind the
left (sL) or right door (sR) representing the true state. Both
agents are able to listen (li) and open the left (oL) or right
door (oR). The listening action li produces a noisy obser-
vation of either hearing the tiger to be left (zL) or right
(zR), which correctly indicates the tiger’s position with 85%
chance and a cost of −1 per listening agent. If both agents
open the same door, the episode terminates with a reward
of -50 if opening the tiger door and +20 otherwise. If both
agents open different doors, the episode ends with -100 re-
ward and, if only one agent opens a door while the other
agent is listening, the episode terminates with -101 if open-
ing the tiger door and +9 otherwise.

Given a horizon of T = 2, the tiger being behind the right
door (sR), and both agents having listened in the first step,
where agent 1 heard zL and agent 2 heard zR: Assuming
that both agents learned to perform the same actions, e.g.,
due to CTDE and parameter sharing (Tan, 1993; Gupta et al.,

2017), Q∗MDP and Q∗ would estimate the following values2:

Q∗MDP(sR, 〈li, li〉) = −2 Q∗(τ t, 〈li, li〉) = −2

Q∗MDP(sR, 〈oL, oL〉) = 20 Q∗(τ t, 〈oL, oL〉) = −15

Q∗MDP(sR, 〈oR, oR〉) = −50 Q∗(τ t, 〈oR, oR〉) = −15

Any policy π∗MDP or decentralizable joint policy π w.r.t.
IGM (Eq. 7) that maximizes Q∗MDP according to Eq. 2
would optimistically recommend 〈oL, oL〉 based on the true
state sR, regardless of what the agents observed. However,
any joint policy π∗ that maximizes the expectation of Q∗

according to Eq. 4 would consider agent-wise stochastic
partial observability and recommend 〈li, li〉, which corre-
sponds to the true optimal decision for T = 2 (Szer et al.,
2005).

4.2. Attention-Based Embeddings of Recurrence

Preliminaries We now introduce Attention-based Embed-
dings of Recurrence In multi-Agent Learning (AERIAL) to
approximate optimal Dec-POMDP value functions Q∗ ac-
cording to Eq. 3-5. Our setup uses a factorization operator
Ψ like QMIX or QPLEX according to Eq. 6-7. All agents
process their local histories τt,i via RNNs as motivated in
Section 2.4 and schematically shown in Fig. 1 (left).

Unlike Q∗MDP, the true optimal Dec-POMDP value func-
tion Q∗ considers more accurate closed-loop information
about decentralized agent decisions through multi-agent re-
currence Pπ(τ t|b0) according to Eq. 5. Simply replacing
st with τ t as suggested in (Lyu et al., 2022) is not sufficient
because the resulting value function would assume a central-
ized controller with access to the complete joint history τ t,
in contrast to decentralized agents i which can only access
their respective local history τt,i (Oliehoek et al., 2008).

Exploiting Multi-Agent Recurrence At first we propose
to naively exploit all individual recurrences by simply re-
placing the true state st in CTDE with the joint memory
representation ht = 〈ht,i〉i∈D of all agents’ RNNs. Each
memory representation ht,i implicitly encodes the individ-
ual recurrence Pπi

i (τt,i|b0) of agent i according to Eq. 8.
Therefore, ht provides more accurate closed-loop informa-
tion about decentralized agent decisions than st.

This approach, called AERIAL (no attention), can
already be considered a sufficient solution if all individual
recurrences Pπi

i (τt,i|b0) are statistically independent such
that Pπ(τ t|b0) =

∏N
i=1 P

πi
i (τt,i|b0).

Attention-Based Recurrence While AERIAL (no
attention) offers a simple way to address agent-wise
stochastic partial observability, the independence assump-
tion of all individual recurrences Pπi

i (τt,i|b0) does not hold

2The exact calculation is provided in the Appendix B.
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Figure 1. Illustration of the AERIAL setup. Left: Recurrent agent network structure with memory representations ht−1,i and ht,i. Right:
Value function factorization via factorization operator Ψ using the joint memory representation ht = 〈ht,i〉i∈D of all agents’ RNNs
instead of true states st. All memory representations ht,i are detached from the computation graph to avoid additional differentiation
(indicated by the dashed gray arrows) and passed through a simplified transformer before being used by Ψ for value function factorization.

in practice due to correlations in observations and actions
(Bernstein et al., 2005; Amato et al., 2007).

Given the Dec-Tiger example above, the individual re-
currences according to Eq. 8 are Pπ1

1 (τt,1|b0) =
Pπ2

2 (τt,2|b0) = 0.5 (Kaelbling et al., 1998). However,
the actual multi-agent recurrence according to Eq. 5 is
Pπ(τ t|b0) = 0.15 · 0.85 6= Pπ1

1 (τt,1|b0) · Pπ2
2 (τt,2|b0),

indicating that individual recurrences are not statistically
independent in general (Oliehoek & Amato, 2016).

Therefore, we process ht by a simplified transformer along
the agent axis to automatically consider the latent depen-
dencies of all memory representations ht,i ∈ ht through
self-attention. The resulting approach, called AERIAL, is
depicted in Fig. 1 and Algorithm 1 in Appendix C.

Our transformer does not use positional encoding or mask-
ing, since we assume no particular ordering among agents.
The joint memory representation ht is passed through a
single multi-head attention layer with the output of each
attention head c being defined by (Vaswani et al., 2017):

attc(ht) = softmax

(
W c
q (ht)W

c
k (ht)

>
√
datt

)
W c
v (ht) (9)

where W c
q , W c

k , and W c
v are multi-layer perceptrons (MLP)

with an output dimensionality of datt. All outputs attc(ht)
are summed and passed through a series of MLP layers be-
fore being fed into the factorization operator Ψ, effectively
replacing the true state st by a learned representation of
multi-agent recurrence Pπ(τ t|b0) according to Eq. 5.

To avoid additional differentation of ht through Ψ or Eq. 9,
we detach ht from the computation graph. Thus, we make

sure that ht is only learned through agent RNNs.

4.3. Discussion of AERIAL

The strong focus on state-based CTDE in the last few years
has led to the development of increasingly complex algo-
rithms that largely neglect stochastic partial observability
in general Dec-POMDPs (Lyu et al., 2021; 2022). In con-
trast, AERIAL offers a simple way to adjust factorization
approaches by replacing the true state st with a learned rep-
resentation of multi-agent recurrence Pπ(τ t|b0) to consider
more accurate closed-loop information about decentralized
agent decisions. The rest of the training scheme remains
unchanged, which eases adjustment of existing approaches.

Since the naive independence assumption of individual
memory representations ht,i does not hold in practice – de-
spite decentralization – we use a simplified transformer to
consider the latent dependencies of all ht,i ∈ ht along the
agent axis to learn an adequate representation of multi-agent
recurrence Pπ(τ t|b0) according to Eq. 5.

AERIAL does not depend on true states therefore requiring
less overall information than state-based CTDE, since we
assume ht to be available in all CTDE setups anyway (Fo-
erster et al., 2018; Rashid et al., 2020). Note that AERIAL
does not necessarily require RNNs to obtain ht as hidden
layers of MLPs or decision transformers can be used to
approximate ht as well (Son et al., 2019; Chen et al., 2021).
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Figure 2. Left: Screenshot of two SMAC maps. Middle: PCA visualization of the joint observations in original SMAC within the first 5
steps of 1,000 episodes using a random policy with K = 0 initial random steps. Right: Analogous PCA visualization for MessySMAC
with K = 10 initial random steps. For visual comparability, the observations are deterministic here.

5. MessySMAC
5.1. Limitation of SMAC as a Benchmark

StarCraft Multi-Agent Challenge (SMAC) provides a rich
set of micromanagement tasks, where a team of learning
agents has to fight against an enemy team, which acts ac-
cording to handcrafted heuristics of the built-in StarCraft
AI (Samvelyan et al., 2019). SMAC currently represents
the de facto standard for MARL evaluation (Rashid et al.,
2018; 2020; Wang et al., 2021). However, SMAC scenarios
exhibit very limited stochastic partial observability due to
deterministic observations and low variance in initial states
therefore only representing simplified special cases rather
than general Dec-POMDP challenges (Lyu et al., 2022; Ellis
et al., 2022). To assess practicability of MARL, we need
benchmarks with sufficient stochasticity as the real-world is
generally messy and only observable through noisy sensors.

5.2. SMAC with Stochastic Partial Observability

MessySMAC is a modified version of SMAC with obser-
vation stochasticity w.r.t. Ω, where all measured values of
observation zt,i are negated with a probability of φ ∈ [0, 1),
and initialization stochasticity w.r.t. b0, where K random
steps are initially performed before officially starting an
episode. During the initial phase, the agents can already
be ambushed by the built-in AI, which further increases
difficulty compared to the original SMAC maps if K > 0.
MessySMAC represents a more general Dec-POMDP chal-
lenge which enables systematic evaluation under various
stochasticity configurations according to φ and K.

Fig. 2 shows the PCA visualization of joint observations
in two maps of original SMAC (K = 0) and MessySMAC
(K = 10) within the first 5 steps of 1,000 episodes using a
random policy. In original SMAC, the initial observations
of s0 (dark purple) are very similar and can be easily distin-
guished from subsequent observations by merely regarding
time steps. Therefore, open-loop control might already be
sufficient to solve these scenarios satisfactorily as hypoth-
esized in (Ellis et al., 2022). However, the distinction of
observations by time steps is more tricky in MessySMAC
due to significantly higher entropy in b0, indicating higher
initialization stochasticity and a stronger requirement for
closed-loop control, where agents need to explicitly consider
their actual observations to make proper decisions.

5.3. Comparison with SMACv2

SMACv2 is an update to the original SMAC benchmark
featuring initialization stochasticity w.r.t. position and
unit types, as well as observation restrictions (Ellis et al.,
2022). SMACv2 addresses similar issues as MessySMAC
but MessySMAC additionally features observation stochas-
ticity w.r.t. Ω according to the general Dec-POMDP for-
mulation in Section 2.1. Unlike MessySMAC, SMACv2
does not support the original SMAC maps thus not enabling
direct comparability w.r.t. stochasticity configurations.

Therefore, SMACv2 can be viewed as entirely new StarCraft
II benchmark, while MessySMAC represents a SMAC exten-
sion, enabling systematic evaluation under various stochas-
ticity configurations for the original SMAC maps.
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Figure 3. Average learning progress w.r.t. the return of AERIAL
variants and state-of-the-art baselines in Dec-Tiger over 50 runs.
Shaded areas show the 95% confidence interval.

6. Experiments
We use the state-based CTDE implementations of QPLEX,
CW-QMIX, OW-QMIX, and QMIX from (Rashid et al., 2020)
as state-of-the-art baselines with their default hyperparame-
ters. We also integrate MAPPO from (Yu et al., 2022). For
all experiments, we report the average performance and the
95% confidence interval over at least 20 runs.

AERIAL is implemented3 using QMIX as factorization op-
erator Ψ according to Fig. 1. We also experimented with
QPLEX as alternative with no significant difference in per-
formance. Thus, we stick with QMIX for efficiency due to
fewer trainable parameters. The transformer of AERIAL
has 4 heads with W c

q , W c
k , and W c

v each having one hid-
den layer of datt = 64 units with ReLU activation. The
subsequent MLP layers have 64 units with ReLU activation.

For ablation study, we implement AERIAL (no
attention), which trains Ψ directly on ht without
self-attention as described in Section 4.2, and AERIAL
(raw history), which trains Ψ on the raw joint history
τ t concatenated with the true state st as originally proposed
for actor-critic methods (Lyu et al., 2022).

6.1. Dec-Tiger

Setting We use the Dec-Tiger problem described in Sec-
tion 4.1 and (Nair et al., 2003) as simple proof-of-concept
domain with T = 4 and γ = 1. We also provide the optimal
value of 4.8 computed with MAA* (Szer et al., 2005).

Results The results are shown in Fig. 3. AERIAL comes
closest to the optimum, achieving an average return of
about zero. AERIAL (no attention) performs sec-
ond best with an average return of about -8, while all other
approaches achieve an average return of about -15.

Discussion The results confirm the example from Section
4.1 and the findings of (Oliehoek et al., 2008; Lyu et al.,

3Code is available at https://github.com/
thomyphan/messy_smac. Further details are in Appendix D.

2022). All state-based CTDE approaches and AERIAL
(raw history) converge to a one-step policy, where
both agents optimistically open the same door regardless
of any agent observation. AERIAL (no attention)
converges to a local optimum most of the time, where both
agents only listen for all T = 4 time steps. AERIAL per-
forms best due to considering the latent dependencies of
all memory representations ht,i ∈ ht via self-attention to
learn an adequate representation of multi-agent recurrence
Pπ(τ t|b0) according to Eq. 5.

6.2. Original SMAC

Setting We evaluate AERIAL in original SMAC using
the maps 3s5z and 10m vs 11m, which are classified as
easy, as well as the hard maps 2c vs 64zg, 3s vs 5z,
and 5m vs 6m, and the super hard map 3s5z vs 3s6z
(Samvelyan et al., 2019).

Results The final average test win rates after 2 million
steps of training are shown in Table 1. AERIAL is competi-
tive to QPLEX and QMIX in the easy maps, while perform-
ing best in 3s vs 5z and 5m vs 6m. MAPPO performs
best in 2c vs 64zg and 3s5z vs 3s6z with AERIAL
being second best in the super hard map 3s5z vs 3s6z.

Discussion AERIAL is competitive to state-of-the-art
baselines in original SMAC, indicating that replacing the
true state st with the joint memory representation ht does
not notably harm performance. Despite outperforming most
baselines in some maps, we do not claim significant outper-
formance here, since we regard most SMAC maps as widely
solved by the community anyway (Ellis et al., 2022).

6.3. MessySMAC

Setting We evaluate AERIAL in MessySMAC using the
same maps as in Section 6.2. We set φ = 15% and K = 10.

Results The results are shown in Fig. 4. AERIAL per-
forms best in all maps with AERIAL (no attention)
being second best except in 2c vs 64zg. In
3s5z vs 3s6z, only AERIAL and AERIAL (no
attention) progress notably. AERIAL (raw
history) performs worst in all maps. MAPPO only
progresses notably in 2c vs 64zg.

Discussion Similar to the Dec-Tiger experiment, the re-
sults confirm the benefit of exploiting more accurate closed-
loop information in domains with stochastic partial observ-
ability. AERIAL consistently outperforms AERIAL (no
attention), indicating that self-attention can correct
for the naive independence assumption of all ht,i ∈ ht.
MAPPO performs especially poorly in MessySMAC due to
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Table 1. Average win rate of AERIAL and state-of-the-art baselines after 2 million time steps of training across 400 final test episodes for
the original SMAC maps with the 95% confidence interval. The best results per map are highlighted in boldface and blue.

AERIAL QPLEX CW-QMIX OW-QMIX QMIX MAPPO
3s5z 0.95± 0.01 0.94± 0.01 0.87± 0.02 0.91± 0.02 0.95± 0.01 68.7± 0.94
10m vs 11m 0.97± 0.01 0.90± 0.02 0.91± 0.02 0.96± 0.01 0.90± 0.02 77.3± 0.66
2c vs 64zg 0.52± 0.11 0.29± 0.1 0.38± 0.12 0.55± 0.13 0.59± 0.11 90.2± 0.24
3s vs 5z 0.96± 0.02 0.74± 0.11 0.18± 0.06 0.08± 0.04 0.81± 0.05 73.8± 0.44
5m vs 6m 0.77± 0.03 0.66± 0.04 0.41± 0.04 0.55± 0.06 0.67± 0.05 60.6± 1.13
3s5z vs 3s6z 0.18± 0.09 0.1± 0.03 0.0± 0.0 0.02± 0.01 0.02± 0.02 20.5± 2.91

(a) 3s5z (b) 10m vs 11m (c) 2c vs 64zg

(d) 3s vs 5z (e) 5m vs 6m (f) 3s5z vs 3s6z

Figure 4. Average learning progress w.r.t. the win rate of AERIAL variants and state-of-the-art baselines in MessySMAC for 2 million
steps over 20 runs. Shaded areas show the 95% confidence interval. The legend at the top applies across all plots.

its misleading dependence on true states without any credit
assignment, confirming the findings of (Ellis et al., 2022).

6.4. Robustness against Stochastic Partial Observability

Setting To evaluate the robustness of AERIAL and
AERIAL (no attention) against various stochastic-
ity configurations in MessySMAC, we manipulate Ω
through the observation negation probability φ and b0
through the number of initial random steps K as defined in
Section 5.2. We compare the results with QMIX and QPLEX
as the best performing state-of-the-art baselines in MessyS-
MAC according to the results in Section 6.3. We present
summarized plots, where the results are aggregated accross
all maps from Section 6.3. To avoid that easy maps dominate
the average win rate, since all approaches achieve high val-
ues there, we normalize the values by the maximum win rate

achieved in the respective map for all tested configurations
of φ and K. Thus, we ensure an equal weighting regardless
of the particular difficulty level. If not mentioned otherwise,
we set φ = 15% and K = 10 as default parameters based
on Section 6.3.

Results The results regarding observation stochasticity
w.r.t. Ω and φ are shown in Fig. 5. Fig. 5(a) shows that
the average win rates of all approaches decrease with in-
creasing φ with AERIAL consistently achieving the highest
average win rate in all configurations. Fig. 5(b) shows
that AERIAL performs best in most MessySMAC maps,
especially when φ ≥ 15%. AERIAL (no attention)
performs second best.

The results regarding initialization stochasticity w.r.t. b0
and K are shown in Fig. 6. Analogously to Fig. 5, Fig.
6(a) shows that the average (normalized) win rates of all ap-
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(a) normalized test win rate (b) # maps best out of 6

Figure 5. Evaluation of AERIAL, AERIAL (no attention),
and the best MessySMAC baselines for different observation nega-
tion probabilities φ affecting observation stochasticity w.r.t. Ω (20
runs per configuration). (a) The average normalized test win rate
accross all 6 MessySMAC maps from Section 6.3. (b) The number
of maps best out of 6. The legend at the top applies across all plots.

(a) normalized test win rate (b) # maps best out of 6

Figure 6. Evaluation of AERIAL, AERIAL (no attention),
and the best MessySMAC baselines for different initial random
steps K affecting initialization stochasticity w.r.t. b0 (20 runs per
configuration). (a) The average normalized test win rate accross all
6 MessySMAC maps from Section 6.3. (b) The number of maps
best out of 6. The legend at the top applies across all plots.

proaches decrease with increasing K with AERIAL consis-
tently achieving the highest average win rate in all configura-
tions. Fig. 6(b) shows that AERIAL performs best in most
MessySMAC maps, especially when K ≥ 10. AERIAL
(no attention) performs second best.

Discussion Our results systematically demonstrate the
robustness of AERIAL and AERIAL (no attention)
against various stochasticity configurations according to
Ω and b0. State-based CTDE is notably less effective in
settings, where observation and initialization stochasticity
is high. As AERIAL consistently performs best in all maps
when φ ≥ 15% or K ≥ 10, we conclude that providing an
adequate representation of Pπ(τ t|b0) according to Eq. 5
that is learned, e.g., through ht and self-attention, is more
beneficial for CTDE than merely relying on true states when
facing domains with high stochastic partial observability.

7. Conclusion and Future Work
To tackle general multi-agent problems, which are messy
and only observable through noisy sensors, we need ade-
quate algorithms and benchmarks that sufficiently consider
stochastic partial observability.

In this paper, we proposed AERIAL to approximate value
functions under stochastic partial observability with a
learned representation of multi-agent recurrence, consid-
ering more accurate closed-loop information about decen-
tralized agent decisions than state-based CTDE.

We then introduced MessySMAC, a modified version of
SMAC with stochastic observations and higher variance in
initial states, to provide a more general and configurable
Dec-POMDP benchmark regarding stochastic partial ob-
servability. We showed visually in Fig. 2 and experimen-
tally in Section 6 that MessySMAC scenarios pose a greater
challenge than their original SMAC counterparts due to
observation and initialization stochasticity.

Compared to state-based CTDE, AERIAL offers a simple
but effective approach to general Dec-POMDPs, being com-
petitive in original SMAC and superior in Dec-Tiger and
MessySMAC, which both exhibit observation and initializa-
tion stochasticity unlike original SMAC. Simply replacing
the true state with memory representations can already im-
prove performance in most scenarios, confirming the need
for more accurate closed-loop information about decentral-
ized agent decisions. Self-attention can correct for the naive
independence assumption of agent-wise recurrence to fur-
ther improve performance, especially when observation or
initialization stochasticity is high.

We plan to further evaluate AERIAL in SMACv2 and mixed
competitive-cooperative settings with multiple CTDE in-
stances (Lowe et al., 2017; Phan et al., 2020).
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A. Limitations and Societal Impacts
A.1. Limitations

AERIAL does not significantly outperform state-of-the-art baselines in easier domains without stochastic partial observability
as indicated by the original SMAC results in Table 1, implying that simplified Dec-POMDP settings might benefit from
more specialized algorithms. The dependence on joint memory representations ht = 〈ht,i〉i∈D might induce some bias
w.r.t. agent behavior policies which could limit performance in hard exploration domains therefore requiring additional
mechanisms beyond the scope of this work. The full version of AERIAL requires additional compute4 due to the transformer
component in Fig. 1 which can be compensated by using a more (parameter) efficient value function factorization operator
Ψ, e.g., using QMIX instead of QPLEX.

A.2. Potential Negative Societal Impacts

The goal of our work is to realize autonomous systems to solve complex tasks under stochastic partial observability as
motivated in Section 1. We refer to (Whittlestone et al., 2021) for a general overview regarding societal implications of deep
RL and completely focus on cooperative MARL settings in the following.

AERIAL is based on a centralized training regime to learn decentralized policies with a common objective. That objective
might include bias of a central authority and could potentially harm opposing parties, e.g., via discrimination or misleading
information. Since training is conducted in a laboratory or a simulation, the resulting system might exhibit unsafe or
questionable behavior when being deployed in the real world due to poor generalization, e.g., leading to accidents or unfair
decisions. The transformer component in Fig. 1 might require a significant amount of additional compute for tuning and
training therefore increasing overall cost. The self-attention weights of Eq. 9 could be used to discriminate participating
individuals in an unethical way, e.g., discarding less relevant groups of individuals according to the softmax output.

Similar to original SMAC, MessySMAC is based on team battles, indicating that any MARL algorithm mastering that
challenge could be misused for real combat, e.g., in autonomous weapon systems to realize distributed and coordinated
strategies. Since MessySMAC covers the aspect of stochastic partial observability, successfully evaluated algorithms could
be potentially more effective and dangerous in real-world scenarios.

B. Dec-Tiger Example
Given the Dec-Tiger example from Section 4.1 with a horizon of T = 2, the tiger being behind the right door (sR), and
both agents having listened in the first step, where agent 1 heard zL and agent 2 heard zR: The final state-based values are
defined by Q∗MDP(st,at) = R(st,at).

Due to both agents perceiving different observations, i.e., zL and zR respectively, the probability of being in state sR is 50%
according to the belief state, i.e., b(sR|τ t) = b(sL|τ t) = 1

2 . Thus, the true optimal Dec-POMDP values for the final time
step are defined by:

Q∗(τ t,at) =
∑

st∈S
b(st|τ t)R(st,at)

=
1

2
(Q∗MDP(sL,at) +Q∗MDP(sR,at))

(10)

The values of Q∗MDP and Q∗ for the final time step t = 2 in the example are given in Table 2. Both agents can reduce the
expected penalty when always performing the same action. Therefore, it is likely for MARL to converge to a joint policy
that recommends the same actions for both agents, especially when synchronization techniques like parameter sharing are
used (Tan, 1993; Gupta et al., 2017; Yu et al., 2022).

C. Full Algorithm of AERIAL
The complete formulation of AERIAL is given in Algorithm 1. Note that AERIAL does not depend on true states st at all,
since the experience samples et (Line 23) used for training do not record any states.

4The additional amount regarding wall clock time was negligible in our experiments though.
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Table 2. The values of Q∗MDP and Q∗ for the final time step t = 2 in the Dec-Tiger example from Section 4.1.
at Q∗MDP(sL,at) Q∗MDP(sR,at) Q∗(τ t,at)
〈li, li〉 −2 −2 −2
〈li, oL〉 -101 +9 -46
〈li, oR〉 +9 -101 -46
〈oL, li〉 -101 +9 -46
〈oL,oL〉 −50 +20 −15
〈oL, oR〉 -100 -100 -100
〈oR, li〉 +9 -101 -46
〈oR, oL〉 -100 -100 -100
〈oR,oR〉 +20 −50 −15

Algorithm 1 Attention-based Embeddings of Recurrence In multi-Agent Learning (AERIAL)
1: Initialize parameters for 〈Qi〉i∈D and Ψ.
2: for episode m← 1, E do
3: Sample s0, z0, and τ0 via b0 and Ω
4: for time step t← 0, T − 1 do
5: for agent i ∈ D do
6: at,i ← πi(τt,i) {Use argmaxat,i∈Ai

Qi(τt,i, at,i)}
7: rand ∼ U(0, 1){Sample from uniform distribution}
8: if rand ≤ ε then
9: Select random action at,i ∈ Ai {Explore with ε-greedy}

10: end if
11: end for
12: at ← 〈at,i〉i∈D
13: Execute joint action at
14: st+1 ∼ T (st+1|st,at)
15: zt+1 ∼ Ω(zt+1|at, st+1)
16: ht ← 〈ht,i〉i∈D {Query memory representations of all agents}
17: Detach ht from computation graph{Avoid additional differentiation through Ψ or Eq. 9}
18: τ t+1 ← 〈τ t,at, zt+1〉 {Concatenate τ t, at, and zt+1}
19: for attention head c← 1, C do
20: attentionc ← attc(ht) {Process individual recurrences according to Eq. 9}
21: end for
22: rect ← MLP(

∑C
c=1 attentionc) {See Section 4.2}

23: et ← 〈τ t,at, rt, zt+1, rect〉
24: Store experience sample et
25: end for
26: Train Ψ and 〈Qi〉i∈D using all et {See Fig. 1}
27: end for
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D. Experiment Details
D.1. Computing infrastructure

All training and test runs were performed in parallel on a computing cluster of fifteen x86 64 GNU/Linux (Ubuntu 18.04.5
LTS) machines with i7-8700 @ 3.2GHz CPU (8 cores) and 64 GB RAM. We did not use any GPU in our experiments.

D.2. Hyperparameters and Neural Network Architectures

Our experiments are based on PyMARL and the code from (Rashid et al., 2020) under the Apache License 2.0. We use the
default setting from the paper without further hyperparameter tuning as well as the same neural network architectures for the
agent RNNs, i.e., gated recurrent units (GRU) of (Cho et al., 2014) with 64 units, and the respective factorization operators
Ψ as specified by default for each state-of-the-art baseline in Section 6. We set the loss weight α = 0.75 for CW-QMIX and
OW-QMIX.

For MAPPO, we use the hyperparameters suggested in (Yu et al., 2022) for SMAC, where we set the clipping parameter to
0.1 and use an epoch count of 5. The parameter λ for generalized advantage estimation is set to 1. The centralized critic has
two hidden layers of 128 units with ReLU activation, a single linear output, and conditions on agent-specific global states
which concatenate the global state and the individual observation per agent. The policy network of MAPPO has a similar
recurrent architecture like the local utility functions Qi and additionally applies softmax to the output layer.

AERIAL is implemented using QMIX as factorization operator Ψ according to Fig. 1. We also experimented with QPLEX as
alternative with no significant difference in performance. Thus, we stick with QMIX for computational efficiency due to
fewer trainable parameters. The transformer has C = 4 heads c ∈ {1, ..., C} with respective MLPs W c

q , W c
k , and W c

v , each
having one hidden layer of datt = 64 units with ReLU activation. The three subsequent MLP layers of Line 22 in Algorithm
1 have 64 units with ReLU activation.

All neural networks are trained using RMSProp with a learning rate of 0.0005.
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Reinforcement Learning

Publication

Carsten Hahn, Thomy Phan, Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. "Emergent Escape-Based Flocking Behavior using Multi-
Agent Reinforcement Learning". In The 2021 Conference on Artificial Life
(ALIFE), pages 598–605, 2019.
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Contributions

1. Emergent swarm behavior through self-interested MARL.

2. Analysis of swarm behavior compared to alternative strategies.

Credit

Hahn conceived the concepts and conducted the empirical analysis. Phan
initiated the work by stating the hypothesis and discussed the concepts and
results. Gabor and Belzner discussed and reviewed the results. Linnhoff-
Popien consulted the process and reviewed the results.

Purpose

Main focus of Chapter 6 regarding the research question Q6 from Section 1.2.
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