630 research outputs found

    Two lectures on flute related topics : "Historical flutists and flute data" & "Baroque ornament guide"

    Get PDF
    Includes bibliographical references.This thesis contains the handouts which accompanied two lectures that were presented to the flute students of Northern Illinois University. These lectures were entitled “Historical Flutists and Flute Data” and “Baroque Ornament Guide” and were given on October 4, 1988 and April 24, 1988, respectively. The first lecture traced the development of the present day flute. The handouts compare different types of flutes with the famous flutists that used them and puts these people in a historical reference with famous composers. The second lecture was an introduction to Baroque ornamentation and embellishment. The handout contains musical examples that can be used as a reference source and an annotated bibliography for more detailed research

    3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2

    Full text link
    The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (M˙w=5×10−7  M⊙yr−1\dot{M}_\mathrm{w}=5\times 10^{-7} \;M_{\odot} \mathrm{yr^{-1}}) and slow (50  km  s−150 \;\mathrm{km \;s^{-1}}) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100  AU>100 \;\mathrm{AU}) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.Comment: resubmitted to MNRAS after referee report, 16 pages, 11 figure

    Hydrodynamical simulations of a compact source scenario for G2

    Full text link
    The origin of the dense gas cloud G2 discovered in the Galactic Center (Gillessen et al. 2012) is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present here detailed simulations of the evolution of winds on G2's orbit. We find that the hydrodynamic interaction with the hot atmosphere present in the Galactic Center and the extreme gravitational field of the supermassive black hole must be taken in account when modeling such a source scenario. We find that the hydrodynamic interaction with the hot atmosphere present in the Galactic Center and the extreme gravitational field of the supermassive black hole must be taken in account when modeling such a source scenario. We also find that in this scenario most of the Br\gamma\ luminosity is expected to come from the highly filamentary densest shocked wind material. G2's observational properties can be used to constrain the properties of the outflow and our best model has a mass outflow rate of Mdot,w=8.8 x 10^{-8} Msun/yr and a wind velocity of vw = 50 km/s. These values are compatible with those of a young TTauri star wind, as already suggested by Scoville & Burkert (2013).Comment: 4 pages, 3 figures; Proceeding of the IAU 303: "The GC: Feeding and Feedback in a Normal Galactic Nucleus" / September 30 - October 4, 2013, Santa Fe, New Mexico (USA

    Infrared interferometry to spatially and spectrally resolve jets in X-ray binaries

    Get PDF
    Infrared interferometry is a new frontier for precision ground based observing, with new instrumentation achieving milliarcsecond (mas) spatial resolutions for faint sources, along with astrometry on the order of 10 microarcseconds. This technique has already led to breakthroughs in the observations of the supermassive black hole at the Galactic centre and its orbiting stars, AGN, and exo-planets, and can be employed for studying X-ray binaries (XRBs), microquasars in particular. Beyond constraining the orbital parameters of the system using the centroid wobble and spatially resolving jet discrete ejections on mas scales, we also propose a novel method to discern between the various components contributing to the infrared bands: accretion disk, jets and companion star. We demonstrate that the GRAVITY instrument on the Very Large Telescope Interferometer (VLTI) should be able to detect a centroid shift in a number of sources, opening a new avenue of exploration for the myriad of transients expected to be discovered in the coming decade of radio all-sky surveys. We also present the first proof-of-concept GRAVITY observation of a low-mass X-ray binary transient, MAXI J1820+070, to search for extended jets on mas scales. We place the tightest constraints yet via direct imaging on the size of the infrared emitting region of the compact jet in a hard state XRB.Comment: 12 Pages, 3 figures, accepted for publication in MNRA

    The Post-Pericenter Evolution of the Galactic Center Source G2

    Full text link
    In early 2014 the fast-moving near-infrared source G2 reached its closest approach to the supermassive black hole Sgr A* in the Galactic Center. We report on the evolution of the ionized gaseous component and the dusty component of G2 immediately after this event, revealed by new observations obtained in 2015 and 2016 with the SINFONI integral field spectrograph and the NACO imager at the ESO VLT. The spatially resolved dynamics of the Brγ\gamma line emission can be accounted for by the ballistic motion and tidal shearing of a test-particle cloud that has followed a highly eccentric Keplerian orbit around the black hole for the last 12 years. The non-detection of a drag force or any strong hydrodynamic interaction with the hot gas in the inner accretion zone limits the ambient density to less than a few 103^3 cm−3^{-3} at the distance of closest approach (1500 RsR_s), assuming G2 is a spherical cloud moving through a stationary and homogeneous atmosphere. The dust continuum emission is unresolved in L'-band, but stays consistent with the location of the Brγ\gamma emission. The total luminosity of the Brγ\gamma and L' emission has remained constant to within the measurement uncertainty. The nature and origin of G2 are likely related to that of the precursor source G1, since their orbital evolution is similar, though not identical. Both object are also likely related to a trailing tail structure, which is continuously connected to G2 over a large range in position and radial velocity.Comment: 17 pages, 12 figures; accepted for publication in Ap

    Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase.

    Get PDF
    The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/ÎČ-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV

    3D AMR simulations of G2 as an outflow

    Full text link
    We study the evolution of G2 in a \textit{Compact Source Scenario}, where G2 is the outflow from a low-mass central star moving on the observed orbit. This is done through 3D AMR simulations of the hydrodynamic interaction of G2 with the surrounding hot accretion flow. A comparison with observations is done by means of mock position-velocity (PV) diagrams. We found that a massive (M˙w=5×10−7  M⊙  yr−1\dot{M}_\mathrm{w}=5\times 10^{-7} \;M_{\odot} \; \mathrm{yr^{-1}}) and slow (vw=50  km  s−1v_\mathrm{w}=50 \;\mathrm{km\; s^{-1}}) outflow can reproduce G2's properties. A faster outflow (vw=400  km  s−1v_\mathrm{w}=400 \;\mathrm{km\; s^{-1}}) might also be able to explain the material that seems to follow G2 on the same orbit.Comment: 2 pages, 1 figure, Proceedings of IAU Symposium 322: The Multi-Messenger Astrophysics of the Galactic Centr

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres
    • 

    corecore