489 research outputs found

    Exact spin dynamics of the 1/r^2 supersymmetric t-J model in a magnetic field

    Full text link
    The dynamical spin structure factor S^{zz}(Q,omega) in the small momentum region is derived analytically for the one-dimensional supersymmetric t-J model with 1/r^2 interaction. Strong spin-charge separation is found in the spin dynamics. The structure factor S^{zz}(Q,omega) with a given spin polarization does not depend on the electron density in the small momentum region. In the thermodynamic limit, only two spinons and one antispinon (magnon) contribute to S^{zz}(Q,omega). These results are derived via solution of the SU(2,1) Sutherland model in the strong coupling limit.Comment: 20 pages, 8 figures. Accepted for publication in J.Phys.

    Flow induced by a sphere settling in an aging yield-stress fluid

    Full text link
    We have studied the flow induced by a macroscopic spherical particle settling in a Laponite suspension that exhibits a yield-stress, thixotropy and shear-thinning. We show that the fluid thixotropy (or aging) induces an increase with time of both the apparent yield stress and shear-thinning properties but also a breaking of the flow fore-aft symmetry predicted in Hershel-Bulkley fluids (yield-stress, shear-thinning fluids with no thixotropy). We have also varied the stress exerted by the particles on the fluid by using particles of different densities. Although the stresses exerted by the particles are of the same order of magnitude, the velocity field presents utterly different features: whereas the flow around the lighter particle shows a confinement similar to the one observed in shear-thinning fluids, the wake of the heavier particle is characterized by an upward motion of the fluid ("negative wake"), whatever the fluid's age. We compare the features of this negative wake to the one observed in viscoelastic shear-thinning fluids (polymeric or micelle solutions). Although the flows around the two particles strongly differ, their settling behaviors display no apparent difference which constitutes an intriguing result and evidences the complexity of the dependence of the drag factor on flow field

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Toy models of crossed Andreev reflection

    Full text link
    We propose toy models of crossed Andreev reflection in multiterminal hybrid structures containing out-of-equilibrium conductors. We apply the description to two possible experiments: (i) to a device containing a large quantum dot inserted in a crossed Andreev reflection circuit. (ii) To a device containing an Aharonov-Bohm loop inserted in a crossed Andreev reflection circuit.Comment: 5 pages, 9 figures, minor modification

    Random bond XXZ chains with modulated couplings

    Get PDF
    The magnetization behavior of q-periodic antiferromagnetic spin 1/2 Heisenberg chains under uniform magnetic fields is investigated in a background of disorder exchange distributions. By means of both real space decimation procedures and numerical diagonalizations in XX chains, it is found that for binary disorder the magnetization exhibits wide plateaux at values of 1+2(p-1)/q, where p is the disorder strength. In contrast, no spin gaps are observed in the presence of continuous exchange distributions. We also study the magnetic susceptibility at low magnetic fields. For odd q-modulations the susceptibility exhibits a universal singularity, whereas for q even it displays a non-universal power law behavior depending on the parameters of the distribution.Comment: 4 pages, 3 figures. Final version to appear in PR

    3rd harmonic ECRH absorption enhancement by 2nd harmonic heating at the same frequency in a tokamak

    Get PDF
    The fundamental mechanisms responsible for the interplay and synergy between the absorption dynamics of extraordinary-mode electron cyclotron waves at two different harmonic resonances (the 2nd and 3rd) are investigated in the TCV tokamak. An enhanced 3rd harmonic absorption in the presence of suprathermal electrons generated by 2nd harmonic heating is predicted by Fokker-Planck simulations, subject to complex alignment requirements in both physical space and momentum space. The experimental signature for the 2nd/3rd harmonic synergy is sought through the suprathermal bremsstrahlung emission in the hard x-ray range of photon energy. Using a synthetic diagnostic, the emission variation due to synergy is calculated as a function of the injected power and of the radial transport of suprathermal electrons. It is concluded that in the present experimental setup a synergy signature has not been unambiguously detected. The detectability of the synergy is then discussed with respect to variations and uncertainties in the plasma density and effective charge in view of future optimized experiments
    • …
    corecore