10,541 research outputs found

    Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss

    Get PDF
    This review on the role of neurofilaments as surrogate markers for axonal degeneration in neurological diseases provides a brief background to protein synthesis, assembly, function and degeneration. Methodological techniques for quantification are described and a protein nomenclature is proposed. The relevance for recognising antineurofilament autoantibodies is noted. Pathological implications are discussed in view of immunocytochemical, cell-culture and genetic findings. With reference to the present symposium on multiple sclerosis, the current literature on body fluid levels of neurofilaments in demyelinating disease is summarised. (c) 2005 Elsevier B.V All rights reserved

    Neuronal cell death and axonal degeneration: Neurofilaments as biomarkers.

    Get PDF

    The Historical Origin of the Pulfrich Effect: A Serendipitous Astronomic Observation at the Border of the Milky Way

    Get PDF
    Interested in star movement the founder of Heidelberg's astronomy observatory, Max Wolf, faced the dilemma that the hitherto used 'Blinkmikrosop' of his Institution was damaged beyond repair following the first world war. He therefore used a new method, stereoscopy, to systematically classify 1053 moving stars between 1915 and 1918. The key problem Wolf identified with the new method was that variation in brightness of the same star on different photographic plates gave rise to an illusory movement. This was a particularly frequent problem with smaller stars close to the very bright Milky Way such as those in the proximity of Cygni or fade-out stars such as R Coronae Borealis. Carl Pulfrich, the world-leading expert on stereoscopy at the time, picked up immediately on the technical limitations Wolf published on stereoscopy in 1920. Pulfrich, who was blind in one eye, could not see the effect himself and designed a projection device to demonstrate Wolf's serendipitous observation to an audience which was equipped with a monocular neutral density filter. Pulfrich performed detailed investigations on the relationship of spatial perception and object movement, naming the phenomenon stereo effect, but it became widely known as the Pulfrich effect. The neuro-anatomical basis of the Pulfrich effect lies in the joint encoding of motion and depth within the visual cortex. Recognising Pulfrich effect is relevant for the management of patients in whom pathology of the visual pathways impairs judgment of object movement/position (e.g., in traffic or sport). Fitting a unilateral tinted lens or contact lens in front of the good eye can abolish the problem

    Reaction rates for a generalized reaction-diffusion master equation

    Full text link
    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm, which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules

    Spectrophotometry for xanthochromia

    Get PDF

    Why human color vision cannot reliably detect cerebrospinal fluid xanthochromia

    Get PDF
    Background - Visual assessment of cerebrospinal fluid (CSF) for xanthochromia ( yellow color) is practiced by the majority of laboratories worldwide as a means of diagnosing intracranical bleeds.Methods - Colorimetric and spectrophotometric analysis of CSF samples for recognizing the presence of bilirubin either in low concentrations or in the presence of hemolysed blood.Results - The experiments provide the physiological and colorimetric basis for abandoning visual assessment of CSF for xanthochromia.Conclusion - We strongly recommend relying on spectrophotometry as the analytical method of choice

    Spectrophotometry for cerebrospinal fluid pigment analysis

    Get PDF
    The use of spectrophotometry for the analysis of the cerebrospinal fluid (CSF) is reviewed. The clinically relevant CSF pigments--oxyhemoglobin and bilirubin--are introduced and discussed with regard to clinical differential diagnosis and potentially confounding variables (the four T's: traumatic tap, timing, total protein, and total bilirubin). The practical laboratory aspects of spectrophotometry and automated techniques are presented in the context of analytical and clinical specificity and sensitivity. The perceptual limitations of human color vision are highlighted and the use of visual assessment of the CSF is discouraged in light of recent evidence from a national audit in the United Kingdom. Finally, future perspectives including the need for longitudinal CSF profiling and routine spectrophotometric calibration are outlined
    corecore