370 research outputs found

    Photoelectric observations of Krzeminski's star, the companion of Cen X-3

    Get PDF
    Centaurus X-3 was the first discovered X-ray source whose intensity is pulsed and eclipsed. Though the X-ray properties of the Cen X-3 system have been intensively studied, the optical properties remained unstudied until Krzeminski's identification of the optical counterpart of Cen X-3. Observations of the X-ray eclipse duration, pulsation frequency variation, and pulse arrival time variation have been used to place limits on the nature of the system and to predict the nature of the optical companion and X-ray sources. An observational determination is presented of the several system parameters based on a preliminary interpretation of the light curve of Krzeminski's star

    A spectroscopic study of LMC X-4

    Get PDF
    The orbital radial velocity semi-amplitude of the binary star system LMC X-4 primary was determined to be 37.9 + or - 2.4 km/s from measurements of the hydrogen absorption lines. The semi-amplitude of the He I and He II absorption lines are consistent with this, namely 44.9 + or - 5.0 and 37.3 + or - 5.3 km/s. The phase and shape of the radial velocity curves of the three ions are consistent with a circular orbit and an ephemeris based upon X-ray measurements of the neutron star, with the exception that the He II absorption line radial velocity curve has detectable shape distortion. Measurements of the He II LAMBOA 4686 emission line velocity are consistent with a phase shifted sine wave of semi-amplitude 535 km/s, a square wave of semi-amplitude 407 km/s, or high order harmonic fits. The spectral type was found to be 08.5 IV-V during X-ray eclipse. Variations to types as early as 07 occur, but not as a function or orbital phase. Absorption line peculiarities were noted on 6 of 58 spectra

    An investigation of the energy balance of solar active regions using the ACRIM irradiance data

    Get PDF
    The correlation between the irradiance (as measured by the Active Cavity Radiometer Irradiance Monitor and the Earth Radiation Budget) as corrected for sunspot flux deficit (which is responsible for most of the variance of the uncorrected signal) and both the 205 nm flux (as measured by Nimbus 7) and a photometric facular index is discussed. The computer program which simulates two-dimensional convection in a compressible, stratified medium is described. Equipment which was acquired to perform high precision, white-light observations of sunspot areas, and procedures were tested. Analysis of observations of large scale convective heat inhomogeneities which were obtained in May 1985 was begun

    Science Enabling Exploration: Using LRO to Prepare for Future Missions

    Get PDF
    Discoveries from LRO have transformed our understanding of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism. If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions

    HST Observations of the Host Galaxy of GRB970508

    Get PDF
    We report on observations of the field of GRB~970508 made in early August 1998, 454 days after outburst, with the STIS CCD camera onboard the Hubble Space Telescope. The images, taken in open filter (50CCD) mode, clearly reveal the presence of a galaxy which was obscured in earlier (June 1997) HST images by emission from the optical transient (OT). The galaxy is regular in shape: after correcting for the HST/STIS PSF, it is well-fitted by an exponential disk with a scale length of 0."046 +/- 0."006 and an ellipticity of 0.70 +/- 0.07. All observations are marginally consistent with a continuous decline in OT emission as t^{-1.3} beginning two days after outburst; however, we find no direct evidence in the image for emission from the OT, and the surface brightness profile of the galaxy is most regular if we assume that the OT emission is negligible, suggesting that the OT may have faded more rapidly at late times than is predicted by the power-law decay. Due to the wide bandwidth of the STIS clear mode, the estimated magnitude of the galaxy is dependent on the galaxy spectrum that is assumed. Using colors obtained from late-time ground-based observations to constrain the spectrum, we find V = 25.4 +/- 0.15, a few tenths of a magnitude brighter than earlier ground-based estimates that were obtained by observing the total light of the galaxy and the OT and then subtracting the estimated OT brightness assuming it fades as a single power-law. This again suggests that the OT may have faded faster at late time than the power-law predicts. The position of the OT agrees with that of the isophotal center of the galaxy to 0."01. This remarkable agreement raises the possibility that the GRB may have been associated with either an active galactic nucleus or a nuclear starburst.Comment: Submitted to the Astrophysical Journal (Letters). Thirteen pages, three encapsulated figures. Abstract slightly abridge

    Building on the Cornerstone: Destinations for Nearside Sample Return

    Get PDF
    Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition

    The decay of optical emission from the Gamma-Ray Burst GRB 970228

    Get PDF
    We present the R_c band light curve of the optical transient (OT) associated with GRB970228, based on re-evaluation of existing photometry. Data obtained until April 1997 suggested a slowing down of the decay of the optical brightness. However, the HST observations in September 1997 show that the light curve of the point source is well represented by a single power law, with a ``dip'', about a week after the burst occured. The exponent of the power law decay is α\alpha = --1.10 ±\pm 0.04. As the point source weakened it also became redder.Comment: 5 pages, latex, to appear in Gamma-Ray Bursts, 4-th Huntsville Symposium, eds Meegan, Preece, Koshu

    Selecting and Certifying a Landing Site for Moonrise in South Pole-Aitken Basin

    Get PDF
    MoonRise is a New Frontiers mission concept to land in the South Pole-Aitken (SPA) basin, collect samples, and return the samples to Earth for detailed mineral, chemical, petrologic, geochronologic, and physical properties analyses to address science questions relevant to the early evolution of the Solar System and the Moon. Science associated with this mission concept is described elsewhere; here we discuss selection of sites within SPA to address science objectives using recent scientific studies (orbital spectroscopy, gravity, topography), and the use of new data (LRO) to certify safe landing sites for a robotic sample return mission such as MoonRise

    Mapping Vesta: First Results from Dawn’s Survey Orbit

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution.Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater sizefrequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase – the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of ~3000 km with a beta angle of 10°-15°
    • …
    corecore