15 research outputs found

    Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    Full text link
    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp) triplet P^o_J (J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.Comment: 13 pages, 9 table

    Sheep Updates 2008 - part 2

    Get PDF
    This session covers eleven papers from different authors: The Sheep Room 1. Analgesia for Surgical Husbandry Procedures in Sheep and Other Livestock, Dr Meredith L. Sheil, Animal Ethics Pty Ltd, Associate Sydney University Faculty of Veterinary Science The Wool Enterprise 2. Unmulsed sheep - implications for chemical use, Di Evans & Brown Besier, Department of Agriculture and Food WA 3. Are Damara and Dorper sheep better adapted than Merinos to nutritional stress? - Growth rates, Tim Scanlon1, Andre Martinho de Almeida2, Johan Greeff1, Tanya Kilminster1, John Milton3, Chris Oldham1, Department of Agriculture and Food WA1, Instituto de Investigacao Cientifica Tropical, Lisbon, Portugal2, University of Western Australia3 4. Are Damara and Dorper sheep better adapted than Merinos to nutritional stress? - Carcass attributes, Tanya Kilminster1, Andre Martinho de Almeida2, Johan Greeff1, John Milton3, Chris Oldham1, Tim Scanlon1, Department of Agriculture and Food WA1, Instituto de Investigacao Cientifica Tropical, Lisbon, Portugal2, University of Western Australia3 The Beef Room 5. Benefits of matching animal requirements with pasture feed supply and animal supply market requirements, B.L. McIntyre, Department of Agriculture and Food Western Australia, 6. Optimal grazing for beef, Alison Wheatley, Beef farmer Winnejup, John Lucey, Department of Agriculture and Food, Western Australia 7. Grain Introduction in commercial cattle feedlots, Fiona Jones1,2, Nick Costa2, 1 Department of Agriculture and Food WA and 2 Murdoch University. Mixed Systems 8. Confinement feeding stock in mixed enterprises, John Milton, The University of Western Australia & Independent Lab Services The Sheep Enterprise 9. Making More than Sheep, Ed Riggall, Australian Wool Innovation and Meat & Livestock Australia 10. Sheep Cost of Production - the enemy is at the gate!, JRL (Bob) Hall, JRL Hall & Co 11. Australian lamb - high yielding good to eat, Robin Jacob1, Dave Pethick2, Dave Hopkins3 and Graham Gardner2, 1Department of Agrcultre and Food WA, 2Murdoch University, 3NSW Department of Primary Industrie

    Agribusiness Sheep Updates - 2004 part 2

    Get PDF
    Precision Pastures Using Species Diversity to Improve Pasture Performance Anyou Liu and Clinton Revell, Department of Agriculture, Western Australia New Annual Pasture Legumes for Sheep Graziers Phil Nichols, Angelo Loi, Brad Nutt and Darryl McClements Department of Agriculture Western Australia Pastures from Space – Can Satellite Estimates of Pasture Growth Rate be used to Increase Farm Profit? Lucy Anderton, Stephen Gherardi and Chris Oldham Department of Agriculture Western Australia Summer-active Perennial Grasses for Profitable Sheep Production Paul Sanford and John Gladman, Department of Agriculture, Western Australia Pastures From Space – Validation Of Predictions Of Pasture Growth Rates DONALD, G.E.A, EDIRISINGHE, A.A, HENRY, D.A.A, MATA, G.A, GHERARDI, S.G.B, OLDHAM, C.M.B, GITTINS, S.P.B AND SMITH, R. C. G.C ACSIRO, Livestock Industries, PMB 5, Wembley, WA, 6913. BDepartment of Agriculture Western Australia, Bentley, WA, 6983. C Department of Land Information Western Australia, Floreat, WA, 6214. Production and Management of Biserrula Pasture - Managing the Risk of Photosensitivity Dr Clinton Revell and Roy Butler, Department of Agriculture Western Australia Meat Quality of Sheep Grazed on a Saltbush-based Pasture Kelly Pearce1,2, David Masters1, David Pethick2, 1 CSIRO LIVESTOCK INDUSTRIES, WEMBLEY, WA 2 SCHOOL OF VETERINARY AND BIOMEDICAL SCIENCE, MURDOCH UNIVERSITY, MURDOCH, WA Precision Sheep Lifetime Wool – Carryover Effects on Subsequent Reproduction of the Ewe Flock Chris Oldham, Department of Agriculture Western Australia Andrew Thompson, Primary Industries Research Victoria (PIRVic), Dept of Primary Industries, Hamilton, Vic Ewe Productivity Trials - a Linked Analysis Ken Hart, Johan Greeff, Department of Agriculture Western Australia, Beth Paganoni, School of Animal Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia. Grain Finishing Systems For Prime Lambs Rachel Kirby, Matt Ryan, Kira Buttler, Department of Agriculture, Western Australia The Effects of Nutrition and Genotype on the Growth and Development, Muscle Biochemistry and Consumer Response to Lamb Meat David Pethick, Department of Veterinary Science, Murdoch University, WA, Roger Heggarty and David Hopkins, New South Wales Agriculture ‘Lifetime Wool’ - Effects of Nutrition During Pregnancy and Lactation on Mortality of Progeny to Hogget Shearing Samantha Giles, Beth Paganoni and Tom Plaisted, Department of Agriculture Western Australia, Mark Ferguson and Darren Gordon, Primary Industries Research Victoria (PIRVic), Dept of Primary Industries, Hamilton, Vic Lifetime Wool - Target Liveweights for the Ewe Flock J. Young, Farming Systems Analysis Service, Kojonup, C. Oldham, Department of Agriculture Western Australia, A. Thompson, Primary Industries Research Victoria (PIRVic), Hamilton, VIC Lifetime Wool - Effects of Nutrition During Pregnancy and Lactation on the Growth and Wool Production of their Progeny at Hogget Shearing B. Paganoni, University of Western Australia, Nedlands WA, C. Oldham, Department of Agriculture Western Australia, M. Ferguson, A. Thompson, Primary Industries Research Victoria (PIRVic), Hamilton, VIC RFID Technology – Esperance Experiences Sandra Brown, Department of Agriculture Western Australia The Role of Radio Frequency Identification (RFID) Technology in Prime Lamb Production - a Case Study. Ian McFarland, Department of Agriculture, Western Australia. John Archer, Producer, Narrogin, Western Australia Win with Twins from Merinos John Milton, Rob Davidson, Graeme Martin and David Lindsay The University of Western Australia Precision Sheep Need Precision Wool Harvesters Jonathan England, Castle Carrock Merinos, Kingston SE, South Australia Business EBVs and Indexes – Genetic Tools for your Toolbox Sandra Brown, Department of Agriculture Western Australia Green Feed Budget Paddock Calculator Mandy Curnow, Department of Agriculture Western Australia Minimising the Impact of Drought - Evaluating Flock Recovery Options using the ImPack Model Karina P. Wood, Ashley K. White, B. Lloyd Davies, Paul M. Carberry, NSW Department of Primary Industries (NSW DPI), Lifetime Wool - Modifying GrazFeed® for WA Mike Hyder, Department of Agriculture Western Australia , Mike Freer, CSIRO Plant Industry, Canberra, A.C.T. , Andrew van Burgel, and Kazue Tanaka, Department of Agriculture Western Australia Profile Calculator – A Way to Manage Fibre Diameter Throughout the Year to Maximise Returns Andrew Peterson, Department of Agriculture, Western Australia Pasture Watch - a Farmer Friendly Tool for Downloading and Analysing Pastures from Space Data Roger Wiese,Fairport Technologies International, South Perth, WA, Stephen Gherardi, BDepartment of Agriculture Western Australia, Gonzalo Mata, CCSIRO, Livestock Industries, Wembley, Western Australia, and Chris Oldham, Department of Agriculture Western Australia Sy Sheep Cropping Systems An Analysis of a Cropping System Containing Sheep in a Low Rainfall Livestock System. Evan Burt, Amanda Miller, Anne Bennett, Department of Agriculture, Western Australia Lucerne-based Pasture for the Central Wheatbelt – is it Good Economics? Felicity FluggeA, Amir AbadiA,B and Perry DollingA,B,A CRC for Plant-based Management of Dryland Salinity: BDept. of Agriculture, WA Sheep and Biserrula can Control Annual Ryegrass Dean Thomas, John Milton, Mike Ewing and David Lindsay, The University of WA, Clinton Revell, Department of Agriculture, Western Australia Sustainable Management Pasture Utilisation, Fleece Weight and Weaning Rate are Integral to the Profitability of Dohnes and SAMMs. Emma Kopke,Department of Agriculture Western Australia, John Young, Farming Systems Analysis Service Environmental Impact of Sheep Confinement Feeding Systems E A Dowling and E K Crossley, Department of Agriculture, Western Australia Smart Grazing Management for Production and Environmental Outcomes Dr Brien E (Ben) Norton, Centre for the Management of Arid Environments, Curtin University of Technology, WA Common Causes of Plant Poisoning in the Eastern Wheatbelt of Western Australia. Roy Butler, Department of Agriculture, Western Australia Selecting Sheep for Resistance to Worms and Production Trait Responses John Karlsson, Johan Greeff, Department of Agriculture, Western Australia, Geoff Pollott, Imperial College, London UK Production and Water Use of Lucerne and French Serradella in Four Soil Types, Diana Fedorenko1,4, Darryl McClements2,4 and Robert Beard3,4, 12Department of Agriculture, Western Australia; 3Farmer, Meckering; 4CRC for Plant-based Management of Dryland Salinity. Worm Burdens in Sheep at Slaughter Brown Besier, Department of Agriculture Western Australia, Una Ryan, Caroline Bath, Murdoch Universit

    Sheep Updates 2008 - part 2

    No full text
    This session covers eleven papers from different authors: The Sheep Room 1. Analgesia for Surgical Husbandry Procedures in Sheep and Other Livestock, Dr Meredith L. Sheil, Animal Ethics Pty Ltd, Associate Sydney University Faculty of Veterinary Science The Wool Enterprise 2. Unmulsed sheep - implications for chemical use, Di Evans & Brown Besier, Department of Agriculture and Food WA 3. Are Damara and Dorper sheep better adapted than Merinos to nutritional stress? - Growth rates, Tim Scanlon1, Andre Martinho de Almeida2, Johan Greeff1, Tanya Kilminster1, John Milton3, Chris Oldham1, Department of Agriculture and Food WA1, Instituto de Investigacao Cientifica Tropical, Lisbon, Portugal2, University of Western Australia3 4. Are Damara and Dorper sheep better adapted than Merinos to nutritional stress? - Carcass attributes, Tanya Kilminster1, Andre Martinho de Almeida2, Johan Greeff1, John Milton3, Chris Oldham1, Tim Scanlon1, Department of Agriculture and Food WA1, Instituto de Investigacao Cientifica Tropical, Lisbon, Portugal2, University of Western Australia3 The Beef Room 5. Benefits of matching animal requirements with pasture feed supply and animal supply market requirements, B.L. McIntyre, Department of Agriculture and Food Western Australia, 6. Optimal grazing for beef, Alison Wheatley, Beef farmer Winnejup, John Lucey, Department of Agriculture and Food, Western Australia 7. Grain Introduction in commercial cattle feedlots, Fiona Jones1,2, Nick Costa2, 1 Department of Agriculture and Food WA and 2 Murdoch University. Mixed Systems 8. Confinement feeding stock in mixed enterprises, John Milton, The University of Western Australia & Independent Lab Services The Sheep Enterprise 9. Making More than Sheep, Ed Riggall, Australian Wool Innovation and Meat & Livestock Australia 10. Sheep Cost of Production - the enemy is at the gate!, JRL (Bob) Hall, JRL Hall & Co 11. Australian lamb - high yielding good to eat, Robin Jacob1, Dave Pethick2, Dave Hopkins3 and Graham Gardner2, 1Department of Agrcultre and Food WA, 2Murdoch University, 3NSW Department of Primary Industrie

    Lung adenocarcinoma promotion by air pollutants

    Get PDF
    This research was conducted using the UK Biobank Resource under application number 82693. This work was supported by the Mark Foundation ASPIRE I Award (grant 21-029-ASP), the Lung Cancer Research Foundation Grant on Disparities in Lung Cancer, Advanced Grant (PROTEUS, grant agreement no. 835297), CRUK EDD (EDDPMA-Nov21\100034) and a Rosetrees Out-of-round Award (OoR2020\100009). W.H. is funded by an ERC Advanced Grant (PROTEUS, grant agreement no. 835297), CRUK EDD (EDDPMA-Nov21\100034), The Mark Foundation (grant 21-029-ASP) and has been supported by Rosetrees. E.L.L. receives funding from the NovoNordisk Foundation (ID 16584), The Mark Foundation (grant 21-029-ASP) and has been supported by Rosetrees. C.E.W. is supported by a RESPIRE4 fellowship from the European Respiratory Society and Marie-Sklodowska-Curie Actions. C.L. is supported by the Agency for Science, Technology & Research, Singapore and the Cancer Research UK City of London Centre and the City of London Centre Clinical Academic Training Programme. M.A. is supported by the City of London Centre Clinical Academic Training Programme (Year 3, SEBSTF-2021\100007). K.C. is supported by the Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, the Chinese Academy of Medical Sciences (2021RU002), the National Natural Science Foundation of China (no. 82072566) and Peking University People’s Hospital Research and Development Funds (RS2019-01). T.K. receives grant support from JSPS Overseas Research Fellowships Program (202060447). S.-H.L. is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2020R1A2C3006535), the National Cancer Center Grant (NCC1911269-3) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number HR20C0025). L.H.S. receives grant support from the Berta Kamprad Foundation, the Swedish Cancer Society and the Swedish Research Council. R.M. and S.L. acknowledge funding from the Terry Fox Research Institute. N.M. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (grant number 211179/Z/18/Z) and receives funding from Cancer Research UK, the Rosetrees and the NIHR BRC at University College London Hospitals and the CRUK University College London Experimental Cancer Medicine Centre. J. DeGregori, M.G., Y.E.M., D.T.M. and R.L.K. receive funding from the American Association for Cancer Research/Johnson&Johnson (18-90-52-DEGR), and J. DeGregori is supported by the Courtenay C. and Lucy Patten Davis Endowed Chair in Lung Cancer Research and a Merit Award from the Veteran’s Administration (1 I01 BX004495). M.G., Y.E.M., D.T.M. and R.L.K. were supported by the National Cancer Institute (NCI) RO1 CA219893. E.J.E.J. was supported by a NCI Ruth L. Kirschstein National Research Service Award T32-CA190216 and the Blumenthal Fellowship from the Linda Crnic Institute for Down Syndrome. C.I.T. acknowledges funding from UC Anschutz (LHNC T32CA174648). The work at the University of Colorado was also supported by NCI Cancer Center Support Grant P30CA046934. K. Litchfield is funded by the UK Medical Research Council (MR/P014712/1 and MR/V033077/1), the Rosetrees Trust and the Cotswold Trust (A2437) and Cancer Research UK (C69256/A30194). M.J.-H. is a CRUK Career Establishment Awardee has received funding from Cancer Research UK, IASLC International Lung Cancer Foundation, the National Institute for Health Research, the Rosetrees Trust, UKI NETs and the NIHR University College London Hospitals Biomedical Research Centre. C.S. is a Royal Society Napier Research Professor (RSRP\R\210001). His work is supported by the Francis Crick Institute that receives its core funding from Cancer Research UK (CC2041), the UK Medical Research Council (CC2041), and the Wellcome Trust (CC2041). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. C.S. is funded by Cancer Research UK (TRACERx (C11496/A17786), PEACE (C416/A21999) and CRUK Cancer Immunotherapy Catalyst Network); Cancer Research UK Lung Cancer Centre of Excellence (C11496/A30025); the Rosetrees Trust, Butterfield and Stoneygate Trusts; NovoNordisk Foundation (ID16584); Royal Society Professorship Enhancement Award (RP/EA/180007); National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre; the Cancer Research UK-University College London Centre; Experimental Cancer Medicine Centre; the Breast Cancer Research Foundation (US) (BCRF-22-157); Cancer Research UK Early Detection an Diagnosis Primer Award (grant EDDPMA-Nov21/100034); and The Mark Foundation for Cancer Research Aspire Award (grant 21-029-ASP). This work was supported by a Stand Up To Cancer‐LUNGevity-American Lung Association Lung Cancer Interception Dream Team Translational Research Grant (grant number: SU2C-AACR-DT23-17 to S.M. Dubinett and A.E. Spira). Stand Up To Cancer is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the Scientific Partner of SU2C. C.S. is in receipt of an ERC Advanced Grant (PROTEUS) from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 835297). We acknowledge the PEACE Consortium (PEACE Consortium members are named below) for their expertise and support in putting together the healthy tissue sample cohorts. We thank the clinical and administrative team of the PEACE study for their assistance in data curation (S. Shepherd, Z. Tippu, B. Shum, C. Lewis, M. O’Flaherty, A. Lucanas, E. Carlyle, L. Holt, F. Williams); nursing and biospecimen coordinators for their assistance in sample curation (K. Edmonds, L. Grostate, K. Lingard, D. Kelly, J. Korteweg, L. Terry, J. Biano, A. Murra, K. Kelly, K. Peat, N. Hunter); A. H. -K. Cheung for assistance in pathology review; J. Asklin and C. Forsberg for logistical and technical assistance; staff at the Chang Gung Memorial Hospital for providing Chang Gung Research Database (CGRD) data; staff who provided support at the Flow Cytometry Unit, the Experimental Histopathology Unit, the Advanced Light Microscopy Facility, the Advanced Sequencing Facility and the Biological Resources Unit, especially N. Chisholm and Jay O’Brien, at the Francis Crick Institute; A. Yuen, A. Azhar, K. Lau, C. Schwartz, A. Lee and C. Rider for their logistical support for the human exposure study; and staff at the Centre d’expertise et de services Génome Québec for their sequencing services and support. Data for this study are based on patient-level information collected by the NHS, as part of the care and support of cancer patients. The data are collated, maintained and quality assured by the National Cancer Registration and Analysis Service, which is part of NHS England (NHSE). We extend our thanks to the skilled Cancer Registration Officers (CROs) within the National Disease Registration Service, who abstracted and registered the English tumour and molecular testing data.Peer reviewedPostprin

    Germline mismatch repair (MMR) gene analyses from English NHS regional molecular genomics laboratories 1996-2020: development of a national resource of patient-level genomics laboratory records.

    No full text
    Peer reviewed: TrueOBJECTIVE: To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. DESIGN: Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years' missing data. RESULTS: Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. CONCLUSION: The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry
    corecore