216 research outputs found

    Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum

    Get PDF
    Heider S, Peters-Wendisch P, Wendisch VF. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology. 2012;12(1): 198.Background Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. Results Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. Conclusion C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production

    Carotenoid Production by Corynebacterium: The Workhorse of Industrial Amino Acid Production as Host for Production of a Broad Spectrum of C40 and C50 Carotenoids

    Get PDF
    Corynebacterium glutamicum is used as a workhorse of industrial biotechnology for more than 60 years since its discovery as a natural glutamate producer in the 1950s. Nowadays, L-glutamate and L-lysine are being produced with this GRAS organism in the million-ton scale every year for the food and feed markets, respectively. Sequencing of the genome and establishment of a genetic toolbox boosted metabolic engineering of this host for a broad range of industrially relevant compounds ranging from bulk chemicals to high-value products. Carotenoids, the colourful representatives of terpenoids, are high-value compounds whose bio-based production is on the rise. Since C. glutamicum is a natural producer of the rare C50 carotenoid decaprenoxanthin, this organism is well suited to establish terpenoid-overproducing platform strains with the help of metabolic engineering strategies. In this work, the carotenogenic background of C. glutamicum and the metabolic engineering strategies for the generation of carotenoid-overproducing strains are depicted

    Corynebacterium glutamicum as a platform strain for the production of a broad variety of terpenoids

    Get PDF
    Corynebacterium glutamicum is a natural carotenoid producing bacterium used in the million-ton-scale amino acid biotechnology that has been engineered for isoprenoid production1. The native membrane-bound carotenoid decaprenoxanthin is a rare C50 carotenoid. Volatile terpenoids such as valencene2 and patchoulol3 could be produced upon deletion of the first step of the specific carotenoid pathway and heterologous expression of the FPP synthase gene ispA from E. coli and terpene synthases from plant origin. However, these strains produced a yet unidentified carotenoid and only when all carotenoid biosynthetic genes were deleted, a colorless strain resulted. Expressing a codon optimized ADS from Artemisia annua in the white strain, amorphadiene, the volatile precursor for artemisinin was produced. For production of volatile terpenoids a dodecane overlay was used, a condition in which C. glutamicum benefits from its robust myco-membrane. Recently, we showed production of membrane-bound carotenoids with different length and/or cyclization status: bicyclic C50 sarcinaxanthin4, bicyclic C40 astaxanthin5, the linear lycopene6 and the linear C50 bisanhydrobacterioruberin7. This indicated that the C. glutamicum myco-membrane accepts these linear and bicyclic carotenoids. Please click Additional Files below to see the full abstract

    Corynebacterium glutamicum CrtR and its orthologs in actinobacteria: conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate

    Get PDF
    Henke NA, Austermeier S, Grothaus IL, et al. Corynebacterium glutamicum CrtR and its orthologs in actinobacteria: conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate. International Journal of Molecular Sciences. 2020;21(15): 5482.Carotenoid biosynthesis in Corynebacteriumglutamicum is controlled by the MarR-type regulator CrtR, which represses transcription of the promoter of the crt operon (PcrtE) and of its own gene (PcrtR). Geranylgeranyl pyrophosphate (GGPP), and to a lesser extent other isoprenoid pyrophosphates, interfere with the binding of CrtR to its target DNA in vitro, suggesting they act as inducers of carotenoid biosynthesis. CrtR homologs are encoded in the genomes of many other actinobacteria. In order to determine if and to what extent the function of CrtR, as a metabolite-dependent transcriptional repressor of carotenoid biosynthesis genes responding to GGPP, is conserved among actinobacteria, five CrtR orthologs were characterized in more detail. EMSA assays showed that the CrtR orthologs from Corynebacteriumcallunae, Acidipropionibacteriumjensenii, Paenarthrobacternicotinovorans, Micrococcusluteus and Pseudarthrobacterchlorophenolicus bound to the intergenic region between their own gene and the divergently oriented gene, and that GGPP inhibited these interactions. In turn, the CrtR protein from C. glutamicum bound to DNA regions upstream of the orthologous crtR genes that contained a 15 bp DNA sequence motif conserved between the tested bacteria. Moreover, the CrtR orthologs functioned in C. glutamicum in vivo at least partially, as they complemented the defects in the pigmentation and expression of a PcrtE_gfpuv transcriptional fusion that were observed in a crtR deletion mutant to varying degrees. Subsequently, the utility of the PcrtE_gfpuv transcriptional fusion and chromosomally encoded CrtR from C. glutamicum as genetically encoded biosensor for GGPP was studied. Combined FACS and LC-MS analysis demonstrated a correlation between the sensor fluorescent signal and the intracellular GGPP concentration, and allowed us to monitor intracellular GGPP concentrations during growth and differentiate between strains engineered to accumulate GGPP at different concentrations

    Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum

    Get PDF
    Henke NA, Heider S, Peters-Wendisch P, Wendisch VF. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs. 2016;14(7): 124.Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum

    Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Get PDF
    Heider S, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology. 2014;2: 28.The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca

    Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum

    Get PDF
    Henke NA, Heider S, Hannibal S, Wendisch VF, Peters-Wendisch P. Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Frontiers in Microbiology. 2017;8: 633.Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin

    Patchoulol production with metabolically engineered Corynebacterium glutamicum

    Get PDF
    Henke NA, Wichmann J, Baier T, et al. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 2018;9(4): 219.Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1

    Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum

    Get PDF
    BACKGROUND: Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates. RESULTS: Quantification of the fluxes of the elementary modes in the metabolism of C. glutamicum was formulated as linear programming. The analysis demonstrated that the solution was dependent on the criteria of objective function when less than four accumulation rates of the external metabolites were considered. The analysis yielded feasible ranges of fluxes of elementary modes that satisfy the experimental accumulation rates. In C. glutamicum, the elementary modes relating to biomass synthesis through glycolysis and TCA cycle were predominantly operational in the initial growth phase. At a later time, the elementary modes contributing to lysine synthesis became active. The oxygen and ammonia uptake rates were shown to be bounded in the phenotypic space due to the stoichiometric constraint of the elementary modes. CONCLUSION: We have demonstrated the use of elementary modes and the linear programming to quantify a metabolic network. We have used the methodology to quantify the network of C. glutamicum, which evaluates the set of operational elementary modes at different phases of fermentation. The methodology was also used to determine the feasible solution space for a given set of substrate uptake rates under specific optimization criteria. Such an approach can be used to determine the optimality of the accumulation rates of any metabolite in a given network

    Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport

    Get PDF
    Optimization of yields and productivities in reductive whole-cell biotransformations is an important issue for the industrial application of such processes. In a recent study with Escherichia coli, we analyzed the reduction of the prochiral β-ketoester methyl acetoacetate by an R-specific alcohol dehydrogenase (ADH) to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) using glucose as substrate for the generation of NADPH. Deletion of the phosphofructokinase gene pfkA almost doubled the yield to 4.8 mol MHB per mole of glucose, and it was assumed that this effect was due to a partial cyclization of the pentose phosphate pathway (PPP). Here, this partial cyclization was confirmed by 13C metabolic flux analysis, which revealed a negative net flux from glucose 6-phosphate to fructose 6-phosphate catalyzed by phosphoglucose isomerase. For further process optimization, the genes encoding the glucose facilitator (glf) and glucokinase (glk) of Zymomonas mobilis were overexpressed in recombinant E. coli strains carrying ADH and deletions of either pgi (phosphoglucose isomerase), or pfkA, or pfkA plus pfkB. In all cases, the glucose uptake rate was increased (30–47%), and for strains Δpgi and ΔpfkA also, the specific MHB production rate was increased by 15% and 20%, respectively. The yield of the latter two strains slightly dropped by 11% and 6%, but was still 73% and 132% higher compared to the reference strain with intact pgi and pfkA genes and expressing glf and glk. Thus, metabolic engineering strategies are presented for improving yield and rate of reductive redox biocatalysis by partial cyclization of the PPP and by increasing glucose uptake, respectively
    corecore