39 research outputs found

    Impact d’une prise en charge basĂ©e sur les scĂ©narios sociaux sur les comportements-problĂšmes d’un enfant ayant un trouble du spectre autistique

    No full text
    Psychologie clinique du dĂ©veloppement. Evolution, involution - handicapLe trouble du spectre autistique est un trouble du dĂ©veloppement marquĂ© par un dĂ©ficit de la communication et des interactions sociales, ainsi que par des comportements rĂ©pĂ©titifs et des intĂ©rĂȘts restreints. Les comportements autistiques peuvent ĂȘtre expliquĂ©s par des dĂ©ficits au niveau de la thĂ©orie de l’esprit, de la cohĂ©rence centrale et des fonctions exĂ©cutives. La mĂ©thode des scĂ©narios sociaux a Ă©tĂ© dĂ©veloppĂ©e afin d’aider les personnes autistes Ă  comprendre certaines situations sociales et de les guider dans leur comportement. Un scĂ©nario social est une histoire courte, Ă©crite dans la perspective de l’individu, qui dĂ©livre les instructions d’un comportement appropriĂ©. Ce support peut aider la personne autiste Ă  se reprĂ©senter en quoi un comportement a un impact sur les Ă©motions et les comportements des autres. Cet outil a Ă©tĂ© utilisĂ© dans le cadre d’une prise en charge d’un enfant ayant un trouble du spectre autistique Ă  l’IME Cottolengo. Ce garçon prĂ©sentait plusieurs troubles du comportement comme des fugues et de l’agressivitĂ© envers autrui. Ce support lui a permis de mieux comprendre les consĂ©quences de son comportement et d’ĂȘtre guidĂ© dans des comportements plus adaptĂ©s. L’évaluation concernant ses comportements-problĂšmes et sa perception sociale a mis en Ă©vidence une Ă©volution positive. L’ensemble des troubles du comportement a diminuĂ© et une amĂ©lioration au niveau de l’expression des Ă©motions et de la prise en compte de l’autre a Ă©galement Ă©tĂ© relevĂ©e. Les scĂ©narios sociaux lui ont Ă©galement permis d’exprimer son ressenti concernant son vĂ©cu Ă  l’IME

    Additional file 4: Figure S3. of Ultrastructure and localization of Neorickettsia in adult digenean trematodes provides novel insights into helminth-endobacteria interaction

    No full text
    TEM of HPF/FS fixed P. elegans. a Overview of a cross-section of the tegument showing a lose cluster of endobacteria (arrows) in one area, but no endobacteria in other areas. b Large endobacteria (arrows) are localized in the wall of the gut, while endobacteria are mostly absent in adjacent tissues. Note the cluster of small structures (boxed area) in the parenchyma. c Magnification of boxed area from b shows a few small endobacteria (arrows) with typical membrane structures among electron dense structures without pronounced membranes. Abbreviations: m, mitochondrion; sgc, shell globule cluster. Scale-bars: a, b, 5 Όm; c 200 nm. (TIF 6120 kb

    Effect of Oil Hydrophobicity on the Adsorption and Rheology of ÎČ‑Lactoglobulin at Oil–Water Interfaces

    No full text
    The adsorption of protein layers at oil–water interfaces is critical to the formation and stability of various emulsions in, for example, technical applications as well as in biological lipid storage. Effects of ionic strength, pH, temperature, and pretreatments of the proteins are well-known. However, the oil phase has been regarded as exchangeable and its role in protein adsorption has been widely ignored. Herein, the influence of systematically selected oil interfaces of high purity on the formation and properties of ÎČ-lactoglobulin (ÎČ-lg) adsorption layers was evaluated. Droplet profile tensiometry and interfacial rheometry were employed to determine the adsorption kinetics and dilatational and interfacial shear moduli. We show that depending on the molecular size, flexibility, hydrophobicity, polarity, and polarizability of the oils, globular proteins adsorb distinctively. Stronger interactions of polar oils with the hydrophilic exterior of the native ÎČ-lg lead to decelerated protein unfolding. This results in lower surface pressures and slower formation of viscoelastic networks. In addition, polar oils interact stronger with the protein network by hydrophilic bonding and thereby act as softening agents. The observed effects of hydrophobic subphases on the adsorbed protein layers provide knowledge, which promotes higher reproducibility in rheological studies and precise tailoring of interfacial films for enhanced formation and stability of emulsions

    C–Br Activation of Aryl Bromides at Ni<sup>0</sup>(NHC)<sub>2</sub>: Stoichiometric Reactions, Catalytic Application in Suzuki–Miyaura Cross-Coupling, and Catalyst Degradation

    No full text
    Complex [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>) (<sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-diisopropylimidazolin-2-ylidene) is a very efficient catalyst for the Suzuki–Miyaura cross-coupling reaction of 4-bromotoluene with phenylboronic acid and also mediates the Ullmann-type homo-cross-coupling reaction of bromobenzene with a moderate efficiency. Stoichiometric reactions of complex <b>1</b> with aryl bromides (ArBr) at room temperature lead to mixtures of aryl bromo complexes of the type <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)­(Ar)] and the bis­(bromo) complex <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] <b>2</b>. The complexes <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)­(Ar)] (for Ar = Ph <b>3</b>, 4-MeC<sub>6</sub>H<sub>4</sub> <b>4</b>, 4-Me­(O)­CC<sub>6</sub>H<sub>4</sub> <b>5</b>, 4-MeOC<sub>6</sub>H<sub>4</sub> <b>6</b>, 4-MeSC<sub>6</sub>H<sub>4</sub> <b>7</b>, 4-Me<sub>2</sub>NC<sub>6</sub>H<sub>4</sub> <b>8</b>, 2-C<sub>5</sub>NH<sub>4</sub> <b>9</b>) can be selectively synthesized by working at low temperatures and using a high dilution of the starting materials. A major deactivation pathway for <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)­(Ar)] was identified in the presence of aryl bromides. This deactivation process includes (i) the formation of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] from <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)­(Ar)] (<b>2</b>) and ArBr and (ii) the formation of an imidazolium salt of the type 2­[<sup><i>i</i></sup>Pr<sub>2</sub>Im-Ar]<sup>+</sup>[NiBr<sub>4</sub>]<sup>2–</sup> from <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] (<b>2</b>) and ArBr. The reactions of complex <b>2</b> with a series of aryl halides at higher temperatures lead to the decomposition of the bis­(carbene) nickel moiety with formation of the imidazolium salts 2­[<sup>i</sup>Pr<sub>2</sub>Im-Ar]<sup>+</sup>[NiBr<sub>2</sub>X<sub>2</sub>]<sup>2–</sup> (for X = I, Ar = Ph <b>10</b> and X = Br, Ar = Ph <b>11</b>, 4-MeC<sub>6</sub>H<sub>4</sub> <b>12</b>, 4-FC<sub>6</sub>H<sub>4</sub> <b>13</b>, 4-OSi­(CH<sub>3</sub>)<sub>3</sub>-C<sub>6</sub>H<sub>4</sub> <b>14</b>) in high yields

    Decisive Steps of the Hydrodefluorination of Fluoroaromatics using [Ni(NHC)<sub>2</sub>]

    No full text
    The hydrodefluorination reaction of perfluorinated arenes using [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>; <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-bis­(isopropyl)­imidazolin-2-ylidene) as a catalyst as well as stoichiometric transformations to elucidate the decisive steps for this reaction are reported. The reaction of hexafluorobenzene with 5 equiv of triphenylsilane in the presence of 5 mol % of <b>1</b> affords 1,2,4,5-tetrafluorobenzene after 48 h at 60 °C and 1,4-difluorobenzene after 96 h at 80 °C; the reaction of perfluorotoluene and 5 equiv of Et<sub>3</sub>SiH for 4 days at 80 °C results in the selective formation of 1-(CF<sub>3</sub>)-2,3,5,6-C<sub>6</sub>F<sub>4</sub>H. Stoichiometric transformations of the complexes <i>cis</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(SiPh<sub>3</sub>)] and <i>cis</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(SiMePh<sub>2</sub>)] with hexafluorobenzene at room temperature lead to the formation of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) with elimination of the corresponding silane or fluorosilane. The reactions of the C–F activation products <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>) with PhSiH<sub>3</sub> and Ph<sub>2</sub>SiH<sub>2</sub> afford the hydride complexes <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>), which convert into the compounds <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2,3,5,6-C<sub>6</sub>F<sub>4</sub>H)] (<b>7</b>), <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>), and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>), respectively. In the case of the rearrangement of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>) the intermediate [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(η<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) was detected. Reaction of <b>8</b> with perfluorotoluene gave the C–F activation product <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>). All these experimental findings point to a mechanism for the HDF by [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>] via the “fluoride route” involving C–F activation of the polyfluoroarene, H/F exchange of the resulting nickel fluoride, reductive elimination of the polyfluoroaryl nickel hydride to an intermediate with a η<sup>2</sup>-C,C-coordinated arene ligand, subsequent ligand exchange with the higher fluorinated polyfluoroarene, and renewed C–F activation of the polyfluoroarene. Without additional reagents, [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(η<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) rearranges to the isomers <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>; major) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>; minor) in a ratio of 80:20. DFT calculations performed on conversion of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] <b>5</b> into the two products <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] <b>9a</b> and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>) using the commonly accepted intramolecular concerted pathway via η<sup>2</sup>-C,F-σ-bound transition states predict <b>9b</b> to be the major product. We thus propose that this reaction mechanism is not valid for the [Ni(NHC)<sub>2</sub>]-mediated C–F activation of partially fluorinated arenes with special substitution patterns

    Decisive Steps of the Hydrodefluorination of Fluoroaromatics using [Ni(NHC)<sub>2</sub>]

    No full text
    The hydrodefluorination reaction of perfluorinated arenes using [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>; <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-bis­(isopropyl)­imidazolin-2-ylidene) as a catalyst as well as stoichiometric transformations to elucidate the decisive steps for this reaction are reported. The reaction of hexafluorobenzene with 5 equiv of triphenylsilane in the presence of 5 mol % of <b>1</b> affords 1,2,4,5-tetrafluorobenzene after 48 h at 60 °C and 1,4-difluorobenzene after 96 h at 80 °C; the reaction of perfluorotoluene and 5 equiv of Et<sub>3</sub>SiH for 4 days at 80 °C results in the selective formation of 1-(CF<sub>3</sub>)-2,3,5,6-C<sub>6</sub>F<sub>4</sub>H. Stoichiometric transformations of the complexes <i>cis</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(SiPh<sub>3</sub>)] and <i>cis</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(SiMePh<sub>2</sub>)] with hexafluorobenzene at room temperature lead to the formation of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) with elimination of the corresponding silane or fluorosilane. The reactions of the C–F activation products <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>) with PhSiH<sub>3</sub> and Ph<sub>2</sub>SiH<sub>2</sub> afford the hydride complexes <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>), which convert into the compounds <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2,3,5,6-C<sub>6</sub>F<sub>4</sub>H)] (<b>7</b>), <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>), and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>), respectively. In the case of the rearrangement of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>) the intermediate [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(η<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) was detected. Reaction of <b>8</b> with perfluorotoluene gave the C–F activation product <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>). All these experimental findings point to a mechanism for the HDF by [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>] via the “fluoride route” involving C–F activation of the polyfluoroarene, H/F exchange of the resulting nickel fluoride, reductive elimination of the polyfluoroaryl nickel hydride to an intermediate with a η<sup>2</sup>-C,C-coordinated arene ligand, subsequent ligand exchange with the higher fluorinated polyfluoroarene, and renewed C–F activation of the polyfluoroarene. Without additional reagents, [Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(η<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) rearranges to the isomers <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>; major) and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>; minor) in a ratio of 80:20. DFT calculations performed on conversion of <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)­(4-(CF<sub>3</sub>)­C<sub>6</sub>F<sub>4</sub>)] <b>5</b> into the two products <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] <b>9a</b> and <i>trans</i>-[Ni­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>) using the commonly accepted intramolecular concerted pathway via η<sup>2</sup>-C,F-σ-bound transition states predict <b>9b</b> to be the major product. We thus propose that this reaction mechanism is not valid for the [Ni(NHC)<sub>2</sub>]-mediated C–F activation of partially fluorinated arenes with special substitution patterns

    Intermicellar Interactions and the Viscoelasticity of Surfactant Solutions: Complementary Use of SANS and SAXS

    No full text
    In ionic surfactant micelles, basic interactions among distinct parts of surfactant monomers, their counterion, and additives are fundamental to tuning molecular self-assembly and enhancing viscoelasticity. Here, we investigate the addition of sodium salicylate (NaSal) to hexa­decyl­tri­methyl­am­monium chloride and bromide (CTAC and CTAB) and 1-hexa­decyl­py­ri­di­nium chloride and bromide (CPyCl and CPyBr), which have distinct counterions and headgroup structures but the same hydrophobic tail. Different contrasts are obtained from small-angle neutron scattering (SANS), which probes differences between the nucleus of atoms, and X-rays SAXS, which probes differences in electron density. If combined, this contrast allows us to define specific intramicellar length scales and intermicellar interactions. SANS signals are sensitive to the contrast between the solvent (D<sub>2</sub>O) and the hydrocarbonic tails in the micellar core (hydrogen), and SAXS can access the inner structure of the polar shell because the headgroups, counterions, and penetrated salt have higher electron densities compared to the solvent and to the micellar core. The number density, intermicellar distances, aggregation number, and inter/intramicellar repulsions are discussed on the basis of the dependence of the structure factor and form factor on the micellar aggregate morphology. Therefore, we confirm that micellar growth can be tuned by variations in the flexibility and size of the the headgroup as well as the ionic dissociation rate of its counterion. Additionally, we show that the counterion binding is even more significant to the development of viscoelasticity than the headgroup structure of a surfactant molecule. This is a surprising finding, showing the importance of electrostatic charges in the self-assembly process of ionic surfactant molecules

    Adhesion characteristics of <i>Lb</i>. <i>plantarum</i> WCFS1 and NZ7114.

    No full text
    <p>A: The transient interfacial tension (A) and elasticity (B) of <i>Lb</i>. <i>plantarum</i> WCFS1 and NZ7114 are shown for both strains. Adhesion to IESM molecules was measured via the absorption of the re-solubilized crystal violet at OD 595 nm after staining of adhered bacteria, which yields a quantitative value for the number of bacteria adhering. Data represent three normalized means of independent biological replicates each carried out in triplicates. The controls represent coated wells that were not exposed to bacteria, and thus unspecific coloring of crystal violet. Significance was tested using ANOVA testing with post-hoc Tuckey test. Significance is indicated using * for p < 0.05. To reveal if the bacteria adsorb to the oil phase, microscopy images are presented in D. The bacterial properties (Zeta potential and electrophoretic mobility are presented in (E).</p

    Summary of bacterial adhesion.

    No full text
    <p>The capacity of bacteria to adhere is a function of physico-chemical charges and surface properties of a bacteria. These properties can be measured quantitatively using rheological and tensiometric methods as illustrated in the upper part of the figure. Through bacterial adsorption at a hydrophobic interface, the interfacial elasticity is increased and depending on the bacterial characteristics, interfacial tension can be decreased. These measurable parameters can be used as quantitative measures for physico-chemical characteristics to different bacterial strains. These physicochemical properties can be used to predict bacteria's potential to adhere to biological surfaces like the intestinal mucosa as illustrated in the lower part of the figure.</p
    corecore