13 research outputs found

    Parametric Optimization of Inverse Trapezoid Oleophobic Surfaces

    No full text
    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure, and mechanical robustness (Im, M. ; Im, H: ; Lee, J.H. ; Yoon, J.B. ; Choi, Y.K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. <i>Soft Matter</i> <b>2010</b>, <i>6</i>, 1401–1404; Im, M. ; Im, H: ; Lee, J.H. ; Yoon, J.B. ; Choi, Y.K. Analytical Modeling and Thermodynamic Analysis of Robust Superhydrophobic Surfaces with Inverse-Trapezoidal Microstructures. <i>Langmuir</i> <b>2010</b>, <i>26</i>, 17389–17397). We find that each of these parameters, if considered alone, would give trivial optima, while their interplay provides a well-defined optimal shape and aspect ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models

    Graphene Oxide as a Monoatomic Blocking Layer

    No full text
    Monolayer graphene oxide (mGO) is shown to effectively protect molecular thin films from reorganization and function as an atomically thin barrier for vapor-deposited Ti/Al metal top electrodes. Fragile organic Langmuir–Blodgett (LB) films of C<sub>22</sub> fatty acid cadmium salts (cadmium(II) behenate) were covered by a compressed mosaic LB film of mGO flakes. These hybrid LB films were examined with atomic force microscopy (AFM) and X-ray reflectivity, both with and without the metal top electrodes. While the AFM enabled surface and morphology analysis, the X-ray reflectivity allowed for a detailed structural depth profiling of the organic film and mGO layer below the metal top layers. The structure of the mGO-protected LB films was found to be perfectly preserved; in contrast, it has previously been shown that metal deposition completely destroys the first two LB layers of unprotected films. This study provides clear evidence of the efficient protection offered by a single atomic layer of GO

    Terahertz s-SNOM reveals nanoscale conductivity of graphene

    No full text
    The nanoscale contrast in scattering-type scanning near-field optical microscopy (s-SNOM) is determined by the optical properties of the sample immediately under the apex of the tip of the atomic force microscope (AFM). There are several models that describe the optical scattering of an incident field by the tip near a surface, and these models have been successful in relating the measured scattering signal to the dielectric function of the sample under the tip. Here, we address a situation that is normally not considered in the existing interaction models, namely the near-field signal arising from thin, highly conductive films in the terahertz (THz) frequency range. According to established theoretical models, highly conductive thin films should show insignificant contrast in the THz range for small variations in conductivity, therefore hindering the use of s-SNOM for nanoscale characterisation. We experimentally demonstrate unexpected but clear and quantifiable layer contrast in the THz s-SNOM signal from few-layer exfoliated graphene as well as subtle nanoscale contrast variations within graphene layers. We use finite-element simulations to confirm that the observed contrast is described by the classical electromagnetics of the scattering mechanism, suggesting that the dipole models must be reformulated to correctly describe the interaction with conductive samples

    In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    No full text
    We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis

    In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    No full text
    We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis

    Graphene Edges Dictate the Morphology of Nanoparticles during Catalytic Channeling

    No full text
    We perform in-situ transmission electron microscopy (TEM) experiments of silver nanoparticles channeling on mono-, bi-, and few-layer graphene and discover that the interactions in the one-dimensional particle–graphene contact line are sufficiently strong so as to dictate the three-dimensional shape of the nanoparticles. We find a characteristic faceted shape in particles channeling along graphene ⟨100⟩ directions that is lost during turning and thus represents a dynamic equilibrium state of the graphene–particle system. We propose a model for the mechanism of zigzag edge formation and an explanation of the rate-limiting step for this process, supported by density functional theory (DFT) calculations, and obtain a good agreement between the DFT-predicted and experimentally obtained activation energies of 0.39 and 0.56 eV, respectively. Understanding the origin of the channels' orientation and the strong influence of the graphene lattice on the dynamic behavior of the particle morphology could be crucial for obtaining deterministic nanopatterning on the atomic scale

    In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    No full text
    We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis

    Stepwise Reduction of Immobilized Monolayer Graphene Oxides

    No full text
    Chemically converted graphene is highly relevant for transparent conducting film applications such as display and photovoltaic uses. So far, the major obstacle for realizing the potential has been to fully reduce/deoxygenate the graphene oxide (GO), which is challenging in part due to the pronounced aggregation that accompanies deoxygenation of GO in solution. Surface immobilization of monolayered graphene oxide (mGO) in Langmuir–Blodgett (LB) films was investigated as a method to circumvent this problem. Two types of LB films with different density of mGO flakes were prepared, i.e., diluted and coherent, and efficiently deoxygenated in a three-step reduction procedure involving subsequent treatment with hydrazine in dimethylformamide (DMF), sulfuric acid, and high temperature annealing. The stepwise reduction process was evaluated with optical microscopy, Raman microscopy, and X-ray photoelectron spectroscopy (XPS) along with electrical characterization. XPS measurements confirmed a full conversion into virtually oxygen-free chemically converted graphene. The electrical characterization revealed large variations in the conductivity for single sheets in the diluted LB films, with an average conductivity of 100 S/cm. A similar conductivity was found for macroscopic devices made from the coherent LB films with overlapping mGO sheets. The large variation in single sheets conductance is assigned to overoxidation of the GO leading to formation of holes, which cannot be recovered in the chemical reduction procedure. The study shows that the applied three-step reduction procedure is chemically complete and that the conductivity of this chemically converted graphene is limited by structural defects/holes rather than remaining oxygen functionalities

    In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    No full text
    We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis

    In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    No full text
    We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We characterize the formation of the contact between the nanowire and the cantilever, showing that the nature of the connection depends on the flow of heat and electrical current during and after the moment of contact. We measure the electrical properties and high current failure characteristics of the resulting bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale structural and electrical parameters on an individual device basis
    corecore