38 research outputs found

    Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple sequence repeats (SSRs) have been successfully used for various genetic and evolutionary studies in eukaryotic systems. The eukaryotic model organism <it>Neurospora crassa </it>is an excellent system to study evolution and biological function of SSRs.</p> <p>Results</p> <p>We identified and characterized 2749 SSRs of 963 SSR types in the genome of <it>N. crassa</it>. The distribution of tri-nucleotide (nt) SSRs, the most common SSRs in <it>N. crassa</it>, was significantly biased in exons. We further characterized the distribution of 19 abundant SSR types (AST), which account for 71% of total SSRs in the <it>N. crassa </it>genome, using a Poisson log-linear model. We also characterized the size variation of SSRs among natural accessions using Polymorphic Index Content (PIC) and ANOVA analyses and found that there are genome-wide, chromosome-dependent and local-specific variations. Using polymorphic SSRs, we have built linkage maps from three line-cross populations.</p> <p>Conclusion</p> <p>Taking our computational, statistical and experimental data together, we conclude that 1) the distributions of the SSRs in the sequenced N. crassa genome differ systematically between chromosomes as well as between SSR types, 2) the size variation of tri-nt SSRs in exons might be an important mechanism in generating functional variation of proteins in <it>N. crassa</it>, 3) there are different levels of evolutionary forces in variation of amino acid repeats, and 4) SSRs are stable molecular markers for genetic studies in <it>N. crassa</it>.</p

    Thermal referral: evidence for a thermoceptive uniformity illusion without touch

    Get PDF
    When warm thermal stimulators are placed on the ring and index fingers of one hand, and a neutral-temperature stimulator on the middle finger, all three fingers feel warm. This illusion is known as thermal referral (TR). On one interpretation, the heterogenous thermal signals are overridden by homogenous tactile signals. This cross-modal thermo-tactile interaction could reflect a process of object recognition, based on the prior that many objects are thermally homogenous. Interestingly, the illusion was reported to disappear when the middle digit was lifted off the thermal stimulator, suggesting that tactile stimulation is necessary. However, no study has investigated whether purely thermal stimulation might induce TR, without any tactile object to which temperature can be attributed. We used radiant thermal stimulation to deliver purely thermal stimuli, which either were or were not accompanied by simultaneous touch. We found identical TR effects in both the original thermo-tactile condition, and in a purely thermoceptive condition where no tactile object was present. Control experiments ruled out explanations based on poor spatial discrimination of warm signals. Our purely thermoceptive results suggest that TR could reflect low-level organization of the thermoceptive pathway, rather than a cognitive intermodal modulation based on tactile object perception
    corecore