1,133 research outputs found
On entanglement evolution across defects in critical chains
We consider a local quench where two free-fermion half-chains are coupled via
a defect. We show that the logarithmic increase of the entanglement entropy is
governed by the same effective central charge which appears in the ground-state
properties and which is known exactly. For unequal initial filling of the
half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde
On reduced density matrices for disjoint subsystems
We show that spin and fermion representations for solvable quantum chains
lead in general to different reduced density matrices if the subsystem is not
singly connected. We study the effect for two sites in XX and XY chains as well
as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure
On the relation between entanglement and subsystem Hamiltonians
We show that a proportionality between the entanglement Hamiltonian and the
Hamiltonian of a subsystem exists near the limit of maximal entanglement under
certain conditions. Away from that limit, solvable models show that the
coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte
One-dimensional Hubbard model at quarter filling on periodic potentials
Using the Hubbard chain at quarter filling as a model system, we study the
ground state properties of highly doped antiferromagnets. In particular, the
Hubbard chain at quarter filling is unstable against 2k_F- and 4k_F-periodic
potentials, leading to a large variety of charge and spin ordered ground
states. Employing the density matrix renormalization group method, we compare
the energy gain of the ground state induced by different periodic potentials.
For interacting systems the lowest energy is found for a 2k_F-periodic magnetic
field, resulting in a band insulator with spin gap. For strong interaction, the
4k_F-periodic potential leads to a half-filled Heisenberg chain and thus to a
Mott insulating state without spin gap. This ground state is more stable than
the band insulating state caused by any non-magnetic 2k_F-periodic potential.
Adding more electrons, a cluster-like ordering is preferred.Comment: 8 pages, 5 figures, accepted by Phys. Rev.
Real-space renormalization group approach for the corner Hamiltonian
We present a real-space renormalization group approach for the corner
Hamiltonian, which is relevant to the reduced density matrix in the density
matrix renormalization group. A set of self-consistent equations that the
renormalized Hamiltonian should satisfy in the thermodynamic limit is also
derived from the fixed point of the recursion relation for the corner
Hamiltonian. We demonstrate the renormalization group algorithm for the
XXZ spin chain and show that the results are consistent with the exact
solution. We further examine the renormalization group for the S=1 Heisenberg
spin chain and then discuss the nature of the eigenvalue spectrum of the corner
Hamiltonian for the non-integrable model.Comment: 7 page
Wilson-like real-space renormalization group and low-energy effective spectrum of the XXZ chain in the critical regime
We present a novel real-space renormalization group(RG) for the
one-dimensional XXZ model in the critical regime, reconsidering the role of the
cut-off parameter in Wilson's RG for the Kondo impurity problem. We then
demonstrate the RG calculation for the XXZ chain with the free boundary.
Comparing the hierarchical structure of the obtained low-energy spectrum with
the Bethe ansatz result, we find that the proper scaling dimension is
reproduced as a fixed point of the RG transformation.Comment: 4 pages, 6 figures, typos corrected, final versio
Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems
In this paper we discuss the properties of the reduced density matrix of
quantum many body systems with permutational symmetry and present basic
quantification of the entanglement in terms of the von Neumann (VNE), Renyi and
Tsallis entropies. In particular, we show, on the specific example of the spin
Heisenberg model, how the RDM acquires a block diagonal form with respect
to the quantum number fixing the polarization in the subsystem conservation
of and with respect to the irreducible representations of the
group. Analytical expression for the RDM elements and for the
RDM spectrum are derived for states of arbitrary permutational symmetry and for
arbitrary polarizations. The temperature dependence and scaling of the VNE
across a finite temperature phase transition is discussed and the RDM moments
and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground
states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir
Korepin (11 pages, 5 figures
Density Matrices for a Chain of Oscillators
We consider chains with an optical phonon spectrum and study the reduced
density matrices which occur in density-matrix renormalization group (DMRG)
calculations. Both for one site and for half of the chain, these are found to
be exponentials of bosonic operators. Their spectra, which are correspondingly
exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure
Area law and vacuum reordering in harmonic networks
We review a number of ideas related to area law scaling of the geometric
entropy from the point of view of condensed matter, quantum field theory and
quantum information. An explicit computation in arbitrary dimensions of the
geometric entropy of the ground state of a discretized scalar free field theory
shows the expected area law result. In this case, area law scaling is a
manifestation of a deeper reordering of the vacuum produced by majorization
relations. Furthermore, the explicit control on all the eigenvalues of the
reduced density matrix allows for a verification of entropy loss along the
renormalization group trajectory driven by the mass term. A further result of
our computation shows that single-copy entanglement also obeys area law
scaling, majorization relations and decreases along renormalization group
flows.Comment: 15 pages, 6 figures; typos correcte
Critical behaviour in parabolic geometries
We study two-dimensional systems with boundary curves described by power
laws. Using conformal mappings we obtain the correlations at the bulk critical
point. Three different classes of behaviour are found and explained by scaling
arguments which also apply to higher dimensions. For an Ising system of
parabolic shape the behaviour of the order at the tip is also found.Comment: Old paper, for archiving. 6 pages, 1 figure, epsf, IOP macr
- …