12,526 research outputs found

    Spin dynamics in the generalized ferromagnetic Kondo model for manganites

    Full text link
    Dynamical spin susceptibility is calculated for the generalized ferromagnetic Kondo model which describes itinerant ege_{g} electrons interacting with localized t2gt_{2g} electrons with antiferromagnetic coupling. The calculations done in the mean field approximation show that the spin-wave spectrum of the system in ferromagnetic state has two branches, acoustic and optic ones. Self-energy corrections to the spectrum are considered and the acoustic spin-wave damping is evaluated

    Classical spin liquid instability driven by off-diagonal exchange in strong spin-orbit magnets

    Get PDF
    We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit coupling to a classical spin liquid regime, characterized by an infinite number of ground states and Ising variables living on closed or open strings. Depending on the sign of the anisotropy, quantum fluctuations either fail to lift the degeneracy down to very low temperatures, or select non-collinear magnetic states with unconventional spin correlations. The results apply to all 2D and 3D tri-coordinated materials with bond-directional anisotropy, and provide a consistent interpretation of the suppression of the x-ray magnetic circular dichroism signal reported recently for β\beta-Li2_2IrO3_3 under pressure

    Nonlinear dynamic intertwining of rods with self-contact

    Get PDF
    Twisted marine cables on the sea floor can form highly contorted three-dimensional loops that resemble tangles. Such tangles or hockles are topologically equivalent to the plectomenes that form in supercoiled DNA molecules. The dynamic evolution of these intertwined loops is studied herein using a computational rod model that explicitly accounts for dynamic self-contact. Numerical solutions are presented for an illustrative example of a long rod subjected to increasing twist at one end. The solutions reveal the dynamic evolution of the rod from an initially straight state, through a buckled state in the approximate form of a helix, through the dynamic collapse of this helix into a near-planar loop with one site of self-contact, and the subsequent intertwining of this loop with multiple sites of self-contact. This evolution is controlled by the dynamic conversion of torsional strain energy to bending strain energy or, alternatively by the dynamic conversion of twist (Tw) to writhe (Wr). KEY WORDS Rod Dynamics, Self-contact, Intertwining, DNA Supercoiling, Cable HocklingComment: 35 pages, 9 figures, submitted to Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science

    Magnetic and orbital ordering in cuprates and manganites

    Full text link
    The mechanisms of magnetic and orbital interactions due to double exchange (DE) and superexchange (SE) in transition metal oxides with degenerate e_g orbitals are presented. Specifically, we study the effective spin-orbital models derived for the d^9 ions as in KCuF_3, and for the d^4 ions as in LaMnO_3, for spins S=1/2 and S=2, respectively. Such models are characterized by three types of elementary excitations: spin waves, orbital waves, and spin-and-orbital waves. The SE interactions between Cu^{2+} (d^9) ions are inherently frustrated, which leads to a new mechanism of spin liquid which operates in three dimensions. The SE between Mn^{3+} (d^4) ions explains the A-type antiferromagnetic order in LaMnO_3 which coexists with the orbital order. In contrast, the ferromagnetic metallic phase and isotropic spin waves observed in doped manganites are explained by DE for degenerate e_g orbitals. It is shown that although a hole does not couple to spin excitations in ferromagnetic planes of LaMnO_3, the orbital excitations change the energy scale for the coherent hole propagation and cause a large redistribution of spectral weight. Finally, we point out some open problems in the present understanding of doped manganites.Comment: 155 pages, 66 figure

    How will disenfranchised Peoples adapt to Climate Change? Strengthening the Ecojustice Movement

    Get PDF
    The Fourth assessment of the Intergovernmental Panel on Climate Change (IPCC) acknowledged That millions of people are currently, and will increasingly be, affected by the impacts of climate change, in the form of floods, droughts and other extreme events, as well as related threats to food security. In response to these global environmental changes, the international community, including civil society, is acting on the need for immediate adaptation measures and is developing strategies for future adaptation. However, the impacts of climate change are unevenly distributed, with many of the poorest, most vulnerable peoples experiencing the immediate effects of climate change, in the here and now. As the IPCC noted, developing countries are disproportionately affected by climate change and often, the least able to adapt due to lack of infrastructure and resources

    Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3

    Full text link
    Motivated by recent neutron and x-ray observations in V_2O_3, we derive the effective Hamiltonian in the strong coupling limit of an Hubbard model with three degenerate t_{2g} states containing two electrons coupled to spin S = 1, and use it to re-examine the low-temperature ground-state properties of this compound. An axial trigonal distortion of the cubic states is also taken into account. Since there are no assumptions about the symmetry properties of the hopping integrals involved, the resulting spin-orbital Hamiltonian can be generally applied to any crystallographic configuration of the transition metal ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of V_2O_3 we consider the antiferromagnetic insulating phase. We find two variational regimes, depending on the relative size of the correlation energy of the vertical pairs and the in-plane interaction energy. The former favors the formation of stable molecules throughout the crystal, while the latter tends to break this correlated state. We determine in both cases the minimizing orbital solutions for various spin configurations, and draw the corresponding phase diagrams. We find that none of the symmetry-breaking stable phases with the real spin structure presents an orbital ordering compatible with the magnetic space group indicated by very recent observations of non-reciprocal x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very small excitation energy in two distinct regions of the phase space, which might turn into the true ground state of V_2O_3 due to the favorable coupling with the lattice. We illustrate merits and drawbacks of the various solutions and discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure

    Black Holes in Higher-Derivative Gravity

    Get PDF
    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this paper we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.Comment: Typos corrected, discussion added, figure changed. 4 pages, 6 figure
    • …
    corecore